Cargando…

Solid oxide fuel cells : from electrolyte-based to electrolyte-free devices /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Zhu, Bin, Raza, Rizwan, Fan, Liangdong, Sun, Chunwen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Weinheim : Wiley-VCH, 2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 KNOVEL_on1141511047
003 OCoLC
005 20231027140348.0
006 m o d
007 cr un|---aucuu
008 200222s2020 gw ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d DG1  |d UKAHL  |d OCLCQ  |d DG1  |d OCLCF  |d N$T  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9783527812790  |q (electronic bk. ;  |q oBook) 
020 |a 3527812792  |q (electronic bk. ;  |q oBook) 
020 |a 3527812784 
020 |a 9783527812783  |q (electronic bk.) 
020 |z 9783527344116  |q (print) 
029 1 |a AU@  |b 000067253994 
029 1 |a DEHBS  |b BV046731982 
035 |a (OCoLC)1141511047 
050 4 |a TK2933.S65 
082 0 4 |a 621.31/2429  |2 23 
049 |a UAMI 
245 0 0 |a Solid oxide fuel cells :  |b from electrolyte-based to electrolyte-free devices /  |c edited by Bin Zhu, Rizwan Raza, Liangdong Fan, Chunwen Sun. 
260 |a Weinheim :  |b Wiley-VCH,  |c 2020. 
300 |a 1 online resource (488 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Solid Oxide Fuel Cell with Ionic Conducting Electrolyte -- Chapter 1 Introduction -- 1.1 An Introduction to the Principles of Fuel Cells -- 1.2 Materials and Technologies -- 1.3 New Electrolyte Developments on LTSOFC -- 1.4 Beyond the State of the Art: The Electrolyte-Free Fuel Cell (EFFC) -- 1.4.1 Fundamental Issues -- 1.5 Beyond the SOFC -- References -- Chapter 2 Solid-State Electrolytes for SOFC -- 2.1 Introduction -- 2.2 Single-Phase SOFC Electrolytes -- 2.2.1 Oxygen Ionic Conducting Electrolyte 
505 8 |a 2.2.1.1 Stabilized Zirconia -- 2.2.1.2 Doped Ceria -- 2.2.1.3 SrO- and MgO-Doped Lanthanum Gallates (LSGM) -- 2.2.2 Proton-Conducting Electrolyte and Mixed Ionic Conducting Electrolyte -- 2.2.3 Alternative New Electrolytes and Research Interests -- 2.3 Ion Conduction/Transportation in Electrolytes -- 2.4 Composite Electrolytes -- 2.4.1 Oxide-Oxide Electrolyte -- 2.4.2 Oxide-Carbonate Composite -- 2.4.2.1 Materials Fabrication -- 2.4.2.2 Performance and Stability Optimization -- 2.4.3 Other Oxide-Salt Composite Electrolytes -- 2.4.4 Ionic Conduction Mechanism Studies of Ceria-Carbonate Composite 
505 8 |a 2.5 NANOCOFC and Material Design Principle -- 2.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Cathodes for Solid Oxide Fuel Cell -- 3.1 Introduction -- 3.2 Overview of Cathode Reaction Mechanism -- 3.3 Development of Cathode Materials -- 3.3.1 Perovskite Cathode Materials -- 3.3.1.1 Mn-Based Perovskite Cathodes -- 3.3.1.2 Co-Based Perovskite Cathodes -- 3.3.1.3 Fe-Based Perovskite Cathodes -- 3.3.1.4 Ni-Based Perovskite Cathodes -- 3.3.2 Double Perovskite Cathode Materials -- 3.4 Microstructure Optimization of Cathode Materials -- 3.4.1 Nanostructured Cathodes 
505 8 |a 3.4.2 Composite Cathodes -- 3.5 Summary -- References -- Chapter 4 Anodes for Solid Oxide Fuel Cell -- 4.1 Introduction -- 4.2 Overview of Anode Reaction Mechanism -- 4.2.1 Basic Operating Principles of a SOFC -- 4.2.1.1 The Anode Three-Phase Boundary -- 4.3 Development of Anode Materials -- 4.3.1 Ni-YSZ Cermet Anode Materials -- 4.3.2 Alternative Anode Materials -- 4.3.2.1 Fluorite Anode Materials -- 4.3.2.2 Perovskite Anode Materials -- 4.3.3 Sulfur-Tolerant Anode Materials -- 4.4 Development of Kinetics, Reaction Mechanism, and Model of the Anode -- 4.5 Summary and Outlook -- Acknowledgments 
504 |a References-Chapter 5 Design and Development of SOFC Stacks-5.1 Introduction-5.2 Change of Cell Output Performance Under 2D Interface Contact-5.2.1 Design of 2D Interface Contact Mode-5.2.2 Variations of Cell Output Performance Under 2D Contact Mode-5.2.3 2D Interface Structure Improvements and Enhancement of Cell Output Performance-5.2.4 Contributions of 3D Contact in 2D Interface Contact-5.2.5 Mechanism of Performance Enhancement After the Transition from 2D to 3D Interface 
500 |a 5.3 Control Design of Transition from 2D to 3D Interface Contact and Their Quantitative Contribution Differentiation 
504 |a Includes bibliographical references and index. 
590 |a Knovel  |b ACADEMIC - Chemistry & Chemical Engineering 
590 |a Knovel  |b ACADEMIC - Electrical & Power Engineering 
650 0 |a Solid oxide fuel cells. 
650 6 |a Piles à combustible à oxyde solide. 
650 7 |a Solid oxide fuel cells.  |2 fast  |0 (OCoLC)fst01125420 
700 1 |a Zhu, Bin. 
700 1 |a Raza, Rizwan. 
700 1 |a Fan, Liangdong. 
700 1 |a Sun, Chunwen. 
776 0 8 |i Print version:  |a Zhu, Bin.  |t Solid Oxide Fuel Cells : From Electrolyte-Based to Electrolyte-Free Devices.  |d Newark : John Wiley & Sons, Incorporated, ©2020  |z 9783527344116 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpSOFCFEB2/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36903271 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36903270 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6109523 
938 |a EBSCOhost  |b EBSC  |n 2373492 
994 |a 92  |b IZTAP