|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
KNOVEL_on1141511047 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
200222s2020 gw ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d DG1
|d UKAHL
|d OCLCQ
|d DG1
|d OCLCF
|d N$T
|d OCLCQ
|d OCLCO
|d OCLCQ
|
020 |
|
|
|a 9783527812790
|q (electronic bk. ;
|q oBook)
|
020 |
|
|
|a 3527812792
|q (electronic bk. ;
|q oBook)
|
020 |
|
|
|a 3527812784
|
020 |
|
|
|a 9783527812783
|q (electronic bk.)
|
020 |
|
|
|z 9783527344116
|q (print)
|
029 |
1 |
|
|a AU@
|b 000067253994
|
029 |
1 |
|
|a DEHBS
|b BV046731982
|
035 |
|
|
|a (OCoLC)1141511047
|
050 |
|
4 |
|a TK2933.S65
|
082 |
0 |
4 |
|a 621.31/2429
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Solid oxide fuel cells :
|b from electrolyte-based to electrolyte-free devices /
|c edited by Bin Zhu, Rizwan Raza, Liangdong Fan, Chunwen Sun.
|
260 |
|
|
|a Weinheim :
|b Wiley-VCH,
|c 2020.
|
300 |
|
|
|a 1 online resource (488 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Solid Oxide Fuel Cell with Ionic Conducting Electrolyte -- Chapter 1 Introduction -- 1.1 An Introduction to the Principles of Fuel Cells -- 1.2 Materials and Technologies -- 1.3 New Electrolyte Developments on LTSOFC -- 1.4 Beyond the State of the Art: The Electrolyte-Free Fuel Cell (EFFC) -- 1.4.1 Fundamental Issues -- 1.5 Beyond the SOFC -- References -- Chapter 2 Solid-State Electrolytes for SOFC -- 2.1 Introduction -- 2.2 Single-Phase SOFC Electrolytes -- 2.2.1 Oxygen Ionic Conducting Electrolyte
|
505 |
8 |
|
|a 2.2.1.1 Stabilized Zirconia -- 2.2.1.2 Doped Ceria -- 2.2.1.3 SrO- and MgO-Doped Lanthanum Gallates (LSGM) -- 2.2.2 Proton-Conducting Electrolyte and Mixed Ionic Conducting Electrolyte -- 2.2.3 Alternative New Electrolytes and Research Interests -- 2.3 Ion Conduction/Transportation in Electrolytes -- 2.4 Composite Electrolytes -- 2.4.1 Oxide-Oxide Electrolyte -- 2.4.2 Oxide-Carbonate Composite -- 2.4.2.1 Materials Fabrication -- 2.4.2.2 Performance and Stability Optimization -- 2.4.3 Other Oxide-Salt Composite Electrolytes -- 2.4.4 Ionic Conduction Mechanism Studies of Ceria-Carbonate Composite
|
505 |
8 |
|
|a 2.5 NANOCOFC and Material Design Principle -- 2.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Cathodes for Solid Oxide Fuel Cell -- 3.1 Introduction -- 3.2 Overview of Cathode Reaction Mechanism -- 3.3 Development of Cathode Materials -- 3.3.1 Perovskite Cathode Materials -- 3.3.1.1 Mn-Based Perovskite Cathodes -- 3.3.1.2 Co-Based Perovskite Cathodes -- 3.3.1.3 Fe-Based Perovskite Cathodes -- 3.3.1.4 Ni-Based Perovskite Cathodes -- 3.3.2 Double Perovskite Cathode Materials -- 3.4 Microstructure Optimization of Cathode Materials -- 3.4.1 Nanostructured Cathodes
|
505 |
8 |
|
|a 3.4.2 Composite Cathodes -- 3.5 Summary -- References -- Chapter 4 Anodes for Solid Oxide Fuel Cell -- 4.1 Introduction -- 4.2 Overview of Anode Reaction Mechanism -- 4.2.1 Basic Operating Principles of a SOFC -- 4.2.1.1 The Anode Three-Phase Boundary -- 4.3 Development of Anode Materials -- 4.3.1 Ni-YSZ Cermet Anode Materials -- 4.3.2 Alternative Anode Materials -- 4.3.2.1 Fluorite Anode Materials -- 4.3.2.2 Perovskite Anode Materials -- 4.3.3 Sulfur-Tolerant Anode Materials -- 4.4 Development of Kinetics, Reaction Mechanism, and Model of the Anode -- 4.5 Summary and Outlook -- Acknowledgments
|
504 |
|
|
|a References-Chapter 5 Design and Development of SOFC Stacks-5.1 Introduction-5.2 Change of Cell Output Performance Under 2D Interface Contact-5.2.1 Design of 2D Interface Contact Mode-5.2.2 Variations of Cell Output Performance Under 2D Contact Mode-5.2.3 2D Interface Structure Improvements and Enhancement of Cell Output Performance-5.2.4 Contributions of 3D Contact in 2D Interface Contact-5.2.5 Mechanism of Performance Enhancement After the Transition from 2D to 3D Interface
|
500 |
|
|
|a 5.3 Control Design of Transition from 2D to 3D Interface Contact and Their Quantitative Contribution Differentiation
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Chemistry & Chemical Engineering
|
590 |
|
|
|a Knovel
|b ACADEMIC - Electrical & Power Engineering
|
650 |
|
0 |
|a Solid oxide fuel cells.
|
650 |
|
6 |
|a Piles à combustible à oxyde solide.
|
650 |
|
7 |
|a Solid oxide fuel cells.
|2 fast
|0 (OCoLC)fst01125420
|
700 |
1 |
|
|a Zhu, Bin.
|
700 |
1 |
|
|a Raza, Rizwan.
|
700 |
1 |
|
|a Fan, Liangdong.
|
700 |
1 |
|
|a Sun, Chunwen.
|
776 |
0 |
8 |
|i Print version:
|a Zhu, Bin.
|t Solid Oxide Fuel Cells : From Electrolyte-Based to Electrolyte-Free Devices.
|d Newark : John Wiley & Sons, Incorporated, ©2020
|z 9783527344116
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpSOFCFEB2/toc
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH36903271
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH36903270
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6109523
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2373492
|
994 |
|
|
|a 92
|b IZTAP
|