Cargando…

Advances in sampling theory and techniques /

"This book presents the current state of the art of digital engineering, as well as recent proposals for optimal methods of signal and image non-redundant sampling and interpolation-error-free resampling. Topics include classical sampling theory, conventional sampling, the peculiarities of samp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: I͡Aroslavskiĭ, L. P. (Leonid Pinkhusovich) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bellingham, Washington (1000 20th St. Bellingham WA 98225-6705 USA) : SPIE, 2020.
Colección:SPIE Press monograph ; PM315.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 KNOVEL_on1139240737
003 OCoLC
005 20231027140348.0
006 m eo d
007 cr bn||||m|||a
008 200128s2020 wau ob 001 0 eng d
040 |a SPIES  |b eng  |e rda  |c SPIES  |d OCLCO  |d OCLCF  |d UIU  |d UPM  |d OCLCQ  |d YDX  |d EUN  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781510633841  |q (pdf) 
020 |a 1510633847  |q (pdf) 
020 |z 9781510633834  |q (paperback) 
020 |z 1510633839  |q (paperback) 
020 |z 9781510633858  |q (epub) 
020 |z 1510633855  |q (epub) 
020 |z 9781510633865  |q (kindle edition) 
020 |z 1510633863  |q (kindle edition) 
024 7 |a 10.1117/3.2554039  |2 doi 
029 1 |a AU@  |b 000068158564 
029 1 |a AU@  |b 000067251408 
035 |a (OCoLC)1139240737 
050 4 |a TK5102.9  |b .I225 2020eb 
082 0 4 |a 621.382/20151952  |2 23 
049 |a UAMI 
100 1 |a I͡Aroslavskiĭ, L. P.  |q (Leonid Pinkhusovich),  |e author. 
245 1 0 |a Advances in sampling theory and techniques /  |c L. Yaroslavsky. 
264 1 |a Bellingham, Washington (1000 20th St. Bellingham WA 98225-6705 USA) :  |b SPIE,  |c 2020. 
300 |a 1 online resource (214 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SPIE Press monograph ;  |v PM315 
504 |a Includes bibliographical references and index. 
505 0 |a Preface -- 1. Introduction: 1.1. A historical perspective of sampling: from ancient mosaics to computational imaging; 1.2. Book overview -- Part I: Signal sampling: 2. Sampling theorems: 2.1. Kotelnikov-Shannon sampling theorem: sampling band-limited 1D signals; 2.2. Sampling 1D band-pass signals; 2.3. Sampling band-limited 2D signals; optimal regular sampling lattices; 2.4. Sampling real signals; signal reconstruction distortions due to spectral aliasing; 2.5. The sampling theorem in a realistic reformulation; 2.6. Image sampling with a minimal sampling rate by means of image sub-band decomposition; 2.7. The discrete sampling theorem and its generalization to continuous signals; 2.8. Exercises -- 3. Compressed sensing demystified: 3.1. Redundancy of regular image sampling and image spectra sparsity; 3.2. Compressed sensing: why and how it is possible to precisely reconstruct signals sampled with aliasing; 3.3. Compressed sensing and the problem of minimizing the signal sampling rate; 3.4. Exercise -- 4. Image sampling and reconstruction with sampling rates close to the theoretical minimum: 4.1. The ASBSR method of image sampling and reconstruction; 4.2. Experimental verification of the method; 4.3. Some practical issues; 4.4. Other possible applications of the ASBSR method of image sampling and reconstruction; 4.5. Exercises 
505 8 |a 5. Signal and image resampling, and building their continuous models: 5.1. Signal/image resampling as an interpolation problem; convolutional interpolators; 5.2. Discrete sinc interpolation: a gold standard for signal resampling; 5.3. Fast algorithms of discrete sinc interpolation and their applications; 5.4. Discrete sinc interpolation versus other interpolation methods: performance comparison; 5.5. Exercises -- 6. Discrete sinc interpolation in other applications and implementations: 6.1. Precise numerical differentiation and integration of sampled signals; 6.2. Local ("elastic") image resampling: sliding-window discrete sinc interpolation algorithms; 6.3. Image data resampling for image reconstruction from projections; 6.4. Exercises -- 7. The discrete uncertainty principle, sinc-lets, and other peculiar properties of sampled signals: 7.1. The discrete uncertainty principle; 7.2. Sinc-lets: Sharply-band-limited basis functions with Sharply limited support; 7.3. Exercises -- Part II: Discrete representation of signal transformations: 8. Basic principles of discrete representation of signal transformations -- 9. Discrete representation of the convolution integral: 9.1. Discrete convolution; 9.2. Point spread functions and frequency responses of digital filters; 9.3. Treatment of signal borders in digital convolution 
505 8 |a 10. Discrete representation of the Fourier integral transform: 10.1. 1D discrete Fourier transforms; 10.2. 2D discrete Fourier transforms; 10.3. Discrete cosine transform; 10.4. Boundary-effect-free signal convolution in the DCT domain; 10.5. DFT and discrete frequency responses of digital filters; 10.6. Exercises -- Appendix 1. Fourier series, integral fourier transform, and delta function: A1.1. 1D Fourier series; A1.2. 2D Fourier series; A1.3. 1D integral Fourier transform; A1.4. 2D integral Fourier transform; A1.5. Delta function, sinc function, and the ideal low-pass filter; A1.6. Poisson summation formula -- Appendix 2. Discrete Fourier transforms and their properties: A2.1. Invertibility of discrete Fourier transforms and the discrete sinc function; A2.2. The Parseval's relation for the DFT; A2.3. Cyclicity of the DFT; A2.4. Shift theorem; A2.5. Convolution theorem; A2.6. Symmetry properties; A2.7. SDFT spectra of sinusoidal signals; A2.8. Mutual correspondence between the indices of ShDFT spectral coefficients and signal frequencies; A2.9. DFT spectra of sparse signals and spectral zero-padding; A2.10. Invertibility of the shifted DFT and signal resampling; A2.11. DFT as a spectrum analyzer; A2.12. Quasi-continuous spectral analysis; A2.13. Signal resizing and rotation capability of the rotated scaled DFT; A2.14. Rotated and scaled DFT as digital convolution -- References -- Index. 
520 |a "This book presents the current state of the art of digital engineering, as well as recent proposals for optimal methods of signal and image non-redundant sampling and interpolation-error-free resampling. Topics include classical sampling theory, conventional sampling, the peculiarities of sampling 2D signals, artifacts, compressed sensing, fast algorithms, the discrete uncertainty principle, and sharply-band-limited discrete signals and basis functions with sharply limited support. Exercises based in MATLAB supplement the text throughout"--  |c Provided by publisher 
500 |a Title from PDF title page (SPIE eBooks Website, viewed 2020-01-28). 
590 |a Knovel  |b ACADEMIC - Electronics & Semiconductors 
650 0 |a Signal processing  |x Digital techniques  |x Mathematics. 
650 0 |a Image processing  |x Digital techniques  |x Mathematics. 
650 0 |a Fourier transformations. 
650 6 |a Traitement du signal  |x Techniques numériques  |x Mathématiques. 
650 6 |a Traitement d'images  |x Techniques numériques  |x Mathématiques. 
650 7 |a Fourier transformations  |2 fast 
650 7 |a Image processing  |x Digital techniques  |x Mathematics  |2 fast 
650 7 |a Signal processing  |x Digital techniques  |x Mathematics  |2 fast 
710 2 |a Society of Photo-Optical Instrumentation Engineers,  |e publisher. 
776 0 8 |i Print version:  |z 1510633839  |z 9781510633834  |w (DLC) 2019042348 
830 0 |a SPIE Press monograph ;  |v PM315. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpASTT0002/toc  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 17220296 
938 |a Society of Photo-Optical Instrumentation Engineers  |b SPIE  |n 9781510633841 
994 |a 92  |b IZTAP