Cargando…

Design for additive manufacturing : concepts and considerations for the aerospace industry /

When the earliest additive manufacturing (AM) technologies were developed in the 1980s and 1990s, their primary application was for the rapid manufacturing of prototypes. In the last decade, however, AM has rapidly emerged as a legitimate manufacturing process for a range of applications beyond prot...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bhate, Dhruv (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Warrendale, Pa. : SAE International, 2019.
Colección:PT (Series) (Warrendale, Pa.) ; 188.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1112609176
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 190820s2019 paua ob 000 0 eng d
040 |a KNOVL  |b eng  |e rda  |e pn  |c KNOVL  |d LVT  |d UX1  |d WAU  |d OCL  |d EYM  |d YDX  |d N$T  |d OCLCQ  |d AAA  |d OCLCO  |d N$T  |d OCLCQ  |d OCLCO 
019 |a 1151530542  |a 1152036085  |a 1194643841  |a 1229719110  |a 1269098083  |a 1269201875  |a 1287873451  |a 1327747047 
020 |a 9781523124138  |q (electronic bk.) 
020 |a 152312413X  |q (electronic bk.) 
020 |a 9780768091526  |q (electronic bk.) 
020 |a 0768091527  |q (electronic bk.) 
020 |z 0768091497 
020 |z 9780768091496 
020 |z 9780768091502 
020 |z 0768091500 
020 |z 9780768091519 
020 |z 0768091519 
024 7 |a 10.4271/PT-188  |2 doi 
029 1 |a AU@  |b 000066209230 
029 1 |a AU@  |b 000070668234 
035 |a (OCoLC)1112609176  |z (OCoLC)1151530542  |z (OCoLC)1152036085  |z (OCoLC)1194643841  |z (OCoLC)1229719110  |z (OCoLC)1269098083  |z (OCoLC)1269201875  |z (OCoLC)1287873451  |z (OCoLC)1327747047 
050 4 |a TL545 
082 0 4 |a 629.1028  |2 23 
049 |a UAMI 
245 0 0 |a Design for additive manufacturing :  |b concepts and considerations for the aerospace industry /  |c edited by Dhruv Bhate. 
264 1 |a Warrendale, Pa. :  |b SAE International,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (xx, 142 pages) :  |b color illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SAE technical paper compilation 
490 1 |a PT ;  |v 188 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
520 |a When the earliest additive manufacturing (AM) technologies were developed in the 1980s and 1990s, their primary application was for the rapid manufacturing of prototypes. In the last decade, however, AM has rapidly emerged as a legitimate manufacturing process for a range of applications beyond prototyping, from tooling to end-use functional part production. Aerospace companies of all sizes have realized this earlier than most, and today, approximately 15% of all revenue generated in the AM industry can be traced back to aerospace applications [1]. There are a wide range of AM processes to choose from, broadly classified into six categories that between them span metals, polymers, ceramics, and biomaterials [2]. The one thing common to these technologies is a layered approach to building a part that uses an energy source such as light, heat, or an electron beam to convert a raw material such as a powder, filament, or resin into a part. 
520 |a Companies may have several strategic reasons for choosing to pursue AM, three of which are cost reduction, lead time reduction, and supply chain simplification. All these reasons stem mostly from an essential aspect of AM--that parts are manufactured layer-by-layer from raw materials and do not need tooling or preformed stock materials. In addition to these drivers, AM processes enable an inherently greater amount of design freedom. In the coming decades, the growth in AM will likely be driven by production parts that leverage this increase in design freedom to manufacture parts of higher performance and improved material utilization. Contrary to popular opinion, however, AM processes do have their constraints and limitations--not everything can be manufactured with AM, and even when it is feasible, not everything should. Finally, even if a part can and should be manufactured with AM, it is important to truly appreciate the design possibilities enabled by AM to maximize the performance, life-cycle cost, and sustainability benefits the technology has to offer--in other words, to understand how we can design for this technology to truly maximize its potential. 
520 |a In the following sections, considerations for AM are first presented that address the appropriateness (should) and feasibility (can) of using AM for manufacturing of parts and tooling. This is followed by a discussion of four different design concepts (how) that are ideally suited for AM technologies to exploit, which tend to drive the value proposition of using AM higher. The ten papers included in this compilation have been selected since they embody these ideas--while some of these papers were published before AM technologies were widespread, they are, nonetheless, a study of how designers in previous generations had to accommodate stringent design constraints. 
505 0 |a Barriers to Entry in Automotive Production and Opportunities with Emerging Additive Manufacturing Techniques -- Contribution of 3D Printing in Tooling and Portable Tools Application Case for a Smart Driller -- Advanced Castings Made Possible through Additive Manufacturing -- Design and Manufacture of Titanium Formula SAE Uprights using Laser-Powder-Deposition -- Construction of a CubeSat Using Additive Manufacturing -- Application of Topology Optimization Techniques in Aircraft Design -- Design of an Aluminum Alloy Swingarm and Its Weight Minimization using Topology Optimization -- Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels -- Development of Lightweight Multifunctional Structures -- Biologically Inspired Design of Lightweight and Protective Structures. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a Knovel  |b ACADEMIC - Aerospace & Radar Technology 
650 0 |a Additive manufacturing. 
650 0 |a Aerospace engineering. 
650 0 |a Aerospace industries. 
650 0 |a Technology assessment. 
650 0 |a Composite materials. 
650 0 |a Three-dimensional printing. 
650 2 |a Printing, Three-Dimensional 
650 6 |a Fabrication additive. 
650 6 |a Aérospatiale (Ingénierie) 
650 6 |a Industries aérospatiales. 
650 6 |a Technologie  |x Évaluation. 
650 6 |a Composites. 
650 6 |a Impression tridimensionnelle. 
650 7 |a composite material.  |2 aat 
650 7 |a 3-D printing.  |2 aat 
650 7 |a Additive manufacturing  |2 fast 
650 7 |a Aerospace engineering  |2 fast 
650 7 |a Aerospace industries  |2 fast 
650 7 |a Composite materials  |2 fast 
650 7 |a Technology assessment  |2 fast 
650 7 |a Three-dimensional printing  |2 fast 
700 1 |a Bhate, Dhruv.,  |e editor. 
776 0 8 |i Print version:  |t Design for additive manufacturing.  |d Warrendale, Pa. : SAE International, 2019  |z 0768091497  |w (OCoLC)1102814179 
830 0 |a PT (Series) (Warrendale, Pa.) ;  |v 188. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpDAMCCAI1/toc  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 3040029 
938 |a YBP Library Services  |b YANK  |n 302472975 
994 |a 92  |b IZTAP