Energy harvesting : materials, physics, and system design with practical examples /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Lancaster, Pennsylvania :
DEStech Publications,
[2019]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Overview of Energy Harvesting
- 1.1. Introduction to Energy Harvesting
- 1.2. Vibration Energy Harvesting
- 1.3. Thermoelectric Energy Harvesting
- 1.4. Photovoltaic Energy Harvesting
- 1.5. Wind Energy Harvesting
- 1.6. Introduction to Electrical Energy Conditioning and Storage
- 2. Inductive Energy Harvesting
- 2.1. Inductive: History and Need
- 2.2. Background Physics
- 2.3. Inductive Harvester Design
- 2.4. Modeling of Inductive Harvesters
- 2.5. Modeling of the Direct Vibration Harvester
- 2.6. Strategies for Optimizing the Figure of Merit
- 2.7. Review of the State-of-the-Art
- 2.8. Future Directions
- 3. Piezoelectric Energy Harvesting
- 3.1. Piezoelectric Materials: History and Fundamentals
- 3.2. Lead-free Piezoelectric Materials
- 3.3. Equivalent Circuit Analysis for Piezoelectrics
- 3.4. Materials for Piezoelectric Energy Harvesting
- 3.5. Mode of Vibration for Harvesting
- 3.6. Continuous System
- 3.7. Energy Harvesting using Low Profile Piezoelectric Transducers
- 3.8. Distributed Parameter Model of Piezoelectric Bimorph Cantilever Beam
- 3.9. Impedance Matching
- 3.10. Piezoelectric MEMS Energy Harvesters
- 4. Magnetostrictive and Magnetoelectric Energy Harvesting
- 4.1. Magnetostrictive: History and Need
- 4.2. Background Physics
- 4.3. Magnetostrictive Vibration Harvester Design
- 4.4. Modeling of Magnetostrictive Harvesters
- 4.5. Strategies for Optimizing the Figure of Merit
- 4.6. Magnetoelectric Effect
- Fundamentals and Material Design
- 4.7. Magnetoelectric Energy Harvesting
- 4.8. Future Directions
- 5. Thermoelectric Energy Harvesting
- 5.1. Thermoelectrics: History and Need
- 5.2. Background Physics
- 5.3. Semiconductors and Thermoelectrics
- 5.4. Strategies for Optimizing Figure of Merit (ZT)
- 5.5. Thermoelectric Materials
- 5.6. Thermoelectric Generator
- 5.7. Microfabricated Energy Harvesting
- 5.8. NASA Radioisotope Thermoelectric Generator (RTG)
- 5.9. Other Applications
- 5.10. New Directions for Low-Dimensional Thermoelectric Materials
- 6. Photovoltaic Energy Harvesting
- 6.1. Photovoltaics: History and Relevance
- 6.2. Physics of Solar Cells
- 6.3. Solar Cell Design and Strategies for Optimizing Figure of Merit
- 6.4. Crystalline Silicon Solar Cells
- 6.5. Thin Film Solar Cells
- 6.6. Emerging Photovoltaic Cells
- 6.7. Multi-Junction Solar Cells
- 6.8. Conclusion and Outlook
- 7. Wind Energy Harvesting
- 7.1. Wind: History and Need
- 7.2. Background Physics
- 7.3. Wind Harvester Design
- 7.4. Modeling of Wind Energy Harvesters
- 7.5. Strategies for Optimizing the Wind Turbine Efficiency
- 7.6. Review of the State-of-the-Art and Future Trends
- 8. Alternative Energy Harvesting Approaches
- 8.1. Shape Memory Alloy Heat Engine
- 8.2. Thermomagnetic Energy Harvesting
- 8.3. Electrostatic Energy Harvesting.