Cargando…

Sensor and data fusion for intelligent transportation systems /

"Sensor and Data Fusion for Intelligent Transportation Systems introduces readers to the roles of the data fusion processes defined by the Joint Directors of Laboratories (JDL) data fusion model, data fusion algorithms, and noteworthy applications of data fusion to ITS. Additionally, the monogr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Klein, Lawrence A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bellingham, Washington, USA : SPIE Press, [2019]
Colección:SPIE Press monograph ; PM305.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 KNOVEL_on1107275079
003 OCoLC
005 20231027140348.0
006 m eo d
007 cr bn||||m|||a
008 190626t20192019wau ob 001 0 eng d
010 |z  2019001144 
040 |a SPIES  |b eng  |e rda  |c SPIES  |d OCLCO  |d CUS  |d UIU  |d OCLCF  |d UPM  |d OCLCQ  |d DKU  |d UWW  |d YDX  |d EBLCP  |d OCLCO  |d OCL  |d OCLCQ  |d N$T 
019 |a 1122891281  |a 1231605196 
020 |a 1510627650  |q (PDF) 
020 |a 9781510627659  |q (electronic bk.) 
020 |z 9781510627642  |q (softcover) 
020 |z 1510627642  |q (softcover) 
020 |z 9781510627666  |q (ePub) 
020 |z 1510627669  |q (ePub) 
020 |z 9781510627673  |q (Kindle) 
020 |z 1510627677  |q (Kindle) 
024 7 |a 10.1117/3.2525400  |2 doi 
029 1 |a AU@  |b 000068157289 
029 1 |a AU@  |b 000065928270 
035 |a (OCoLC)1107275079  |z (OCoLC)1122891281  |z (OCoLC)1231605196 
050 4 |a TE228.3  |b .K537 2019 
082 0 4 |a 388.3/12  |2 23 
049 |a UAMI 
100 1 |a Klein, Lawrence A.,  |e author. 
245 1 0 |a Sensor and data fusion for intelligent transportation systems /  |c Lawrence A. Klein. 
264 1 |a Bellingham, Washington, USA :  |b SPIE Press,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (254 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SPIE Press monograph ;  |v PM305 
504 |a Includes bibliographical references and index. 
505 0 |a Preface -- Acronyms -- 1. Introduction: 1.1. Applications to ITS; 1.2. Data, information, and knowledge; 1.3. Summary of book contents -- 2. Sensor and data fusion in traffic management: 2.1. What is meant by sensor and data fusion? 2.2. Sensor and data fusion benefits to traffic management; 2.3. Data sources for traffic management applications; 2.4. Sensor and data fusion architectures; 2.5. Detection, classification, and identification of a vehicle; 2.6. The JDL and DFIG data fusion models; 2.7. Level 1 fusion: detection, classification, and identification algorithms; 2.8. Level 1 fusion: state estimation and tracking algorithms; 2.9. Data fusion algorithm selection; 2.10. Level 2 and level 3 fusion processing; 2.11. Level 4 fusion processing; 2.12. Level 5 fusion processing; 2.13. Applications of sensor and data fusion to ITS; 2.14. Summary -- 3. Bayesian inference for traffic management: 3.1 Bayesian inference; 3.2 Derivation of Bayes' theorem; 3.3 Likelihood function and prior probability models; 3.4 Monty Hall problem; 3.5 Application of Bayes' theorem to cancer screening; 3.6 Bayesian inference in support of data fusion; 3.7 Bayesian inference applied to vehicle identification; 3.8 Bayesian inference applied to freeway incident detection using multiple-source data; 3.9 Bayesian inference applied to truck classification; 3.10 Causal Bayesian networks; 3.11 Summary 
505 8 |a 4. Dempster-Shafer evidential reasoning for traffic management: 4.1. Overview of the process; 4.2. Implementation of the method; 4.3. Support, plausibility, and uncertainty interval; 4.4. Dempster's rule for combining multiple-sensor data; 4.5. Vehicle detection using Dempster-Shafer evidential reasoning; 4.6. Singleton proposition vehicle detection problem solved with Bayesian inference; 4.7. Constructing probability mass functions; 4.8. Decision support system application of Dempster-Shafer reasoning; 4.9. Comparison with Bayesian inference; 4.10. Modifications to the original Dempster-Shafer method; 4.11. Summary -- 5. Kalman filtering for traffic management: 5.1. Optimal estimation; 5.2. Kalman filter application to object tracking; 5.3. State transition model; 5.4. Measurement model; 5.5. The discrete-time Kalman filter algorithm; 5.6. Relation of measurement-to-track correlation decision to the Kalman gain; 5.7. Initialization and subsequent recursive operation of the Kalman filter; 5.8. The a-b filter; 5.9. Kalman gain control methods; 5.10. Noise covariance values and filter tuning; 5.11. Process noise covariance matrix models -- 6. State of the practice and research gaps: 6.1. Data fusion state of the practice; 6.2. Need for continued data fusion research; 6.3. Prerequisite information for level 1 object assessment algorithms -- Appendix: The fundamental matrix of a fixed continuous-time system -- Index. 
520 |a "Sensor and Data Fusion for Intelligent Transportation Systems introduces readers to the roles of the data fusion processes defined by the Joint Directors of Laboratories (JDL) data fusion model, data fusion algorithms, and noteworthy applications of data fusion to ITS. Additionally, the monograph offers detailed descriptions of three of the widely applied data fusion techniques and their relevance to ITS (namely, Bayesian inference, Dempster-Shafer evidential reasoning, and Kalman filtering), and indicates directions for future research in the area of data fusion. The focus is on data fusion algorithms rather than on sensor and data fusion architectures, although the book does summarize factors that influence the selection of a fusion architecture and several architecture frameworks"--  |c Provided by publisher 
500 |a Title from PDF title page (SPIE eBooks Website, viewed 2019-06-26). 
590 |a Knovel  |b ACADEMIC - Transportation Engineering 
590 |a Knovel  |b ACADEMIC - Electronics & Semiconductors 
650 0 |a Intelligent transportation systems. 
650 0 |a Multisensor data fusion. 
650 0 |a Motor vehicles  |x Automatic control. 
650 0 |a Traffic congestion. 
650 0 |a Algorithms. 
650 0 |a Computer algorithms. 
650 6 |a Systèmes de transport intelligents. 
650 6 |a Fusion multicapteurs. 
650 6 |a Véhicules automobiles  |x Commande automatique. 
650 6 |a Embouteillages (Circulation) 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Intelligent transportation systems.  |2 fast  |0 (OCoLC)fst01723430 
650 7 |a Motor vehicles  |x Automatic control.  |2 fast  |0 (OCoLC)fst01027725 
650 7 |a Multisensor data fusion.  |2 fast  |0 (OCoLC)fst01029095 
650 7 |a Traffic congestion.  |2 fast  |0 (OCoLC)fst01154060 
710 2 |a Society of Photo-optical Instrumentation Engineers,  |e publisher. 
776 0 8 |i Print version:  |z 1510627642  |z 9781510627642  |w (DLC) 2019001144 
830 0 |a SPIE Press monograph ;  |v PM305. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpSDFITS05/toc  |z Texto completo 
938 |a Society of Photo-Optical Instrumentation Engineers  |b SPIE  |n 9781510627659 
938 |a YBP Library Services  |b YANK  |n 17220278 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6380049 
938 |a EBSCOhost  |b EBSC  |n 3267703 
994 |a 92  |b IZTAP