LiDAR technologies and systems /
LiDAR is one of many active sensor technologies that uses electromagnetic radiation. Operating in the optical and infrared wavelengths, it is similar to more-familiar passive EO/IR sensor technology. It is also similar to radar in that it uses reflected electromagnetic radiation emitted by the senso...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bellingham, Washington (1000 20th St. Bellingham WA 98225-6705 USA) :
SPIE,
2019.
|
Colección: | SPIE Press monograph ;
PM300. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- 1. Introduction to LiDAR: 1.1. Context of LiDAR; 1.2. Conceptual discussion of LiDAR; 1.3. Terms for active EO sensing; 1.4. Types of LiDARs; 1.5. LiDAR detection modes; 1.6. Flash LiDAR versus scanning LiDAR; 1.7. Eye safety considerations; 1.8. Laser safety categories; 1.9. Monostatic versus bistatic LiDAR; 1.10. Transmit/receive isolation; 1.11. Major devices in a LiDAR; 1.12. Organization of the book; Problems and solutions; References
- 2. History of LiDAR: 2.1. Rangefinders, altimeters, and designators; 2.2. Early coherent LiDARs; 2.3. Early space-based LiDAR; 2.4. Flight-based Laser Vibrometers; 2.5. Environmental LiDARs; 2.6. Imaging LiDARs; 2.7. History conclusion; References
- 3. LiDAR range equation: 3.1. Introduction to the LiDAR range equation; 3.2. Illuminator beam; 3.3. LiDAR cross-section; 3.4. Link budget range equation; 3.5. Atmospheric effects; Problems and solutions; Notes and references
- 4. Types of LiDAR: 4.1. Direct-detection LiDAR; 4.2. Coherent LiDAR; 4.3. Multiple-input, multiple-output active EO sensing; Appendix 4.1. MATLAB® program showing synthetic-aperture pupil planes and MTFs; Problems and solutions; References
- 5. LiDAR sources and modulations: 5.1. Laser background discussion; 5.2. Laser waveforms for LiDAR; 5.3. Lasers used in LiDAR; 5.4. Bulk solid state lasers for LiDAR; 5.5. Fiber format; Problems and solutions; References
- 6. LiDAR receivers: 6.1. Introduction to LiDAR receivers; 6.2. LiDAR signal-to-noise ratio; 6.3. Avalanche photodiodes and direct detection; 6.4. Silicon detectors; 6.5. Heterodyne detection; 6.6. Long-frame-time framing detectors for LiDAR; 6.7. Ghost LiDARs; 6.8. LiDAR image stabilization; 6.9. Optical-time-of-flight flash LiDAR; Problems and solutions; Notes and references
- 7. LiDAR beam steering and optics: 7.1. Mechanical beam-steering approaches for LiDAR; 7.2. Nonmechanical beam-steering approaches for steering LiDAR optical beams; 7.3. Some optical design considerations for LiDAR; Problems and solutions; Notes and references
- 8. LiDAR processing: 8.1. Introduction; 8.2. Generating LiDAR images/information; Problems and solutions; References
- 9. Figures of merit, testing, and calibration for LiDAR: 9.1. Introduction; 9.2. LiDAR characterization and figures of merit; 9.3. LiDAR testing; 9.4. LiDAR calibration; Problems and solutions; References
- 10. LiDAR performance metrics: 10.1. Image quality metrics; 10.2. LiDAR parameters; 10.3. Image parameters: National Imagery Interpretability Rating Scale (NIIRS); 10.4. 3D metrics for LiDAR images; 10.5. General image quality equations; 10.6. Quality metrics associated with automatic target detection, recognition, or identification; 10.7. Information theory related to image quality metrics; 10.8. Image quality metrics based on alternative basis sets; 10.9. Eigenmodes; 10.10. Compressive sensing; 10.11. Machine learning; 10.12. Processing to obtain imagery; 10.13. Range resolution in EO/IR imagers; 10.14. Current LiDAR metric standards; 10.15. Conclusion; Appendix 10-1. MATLAB code to Fourier transform an image; Problems and solutions; References
- 11. Significant applications of LiDAR: 11.1. Auto LiDAR; 11.2. 3D mapping LiDAR; 11.3. Laser vibrometers; 11.4. Wind sensing; Problems and solutions; References
- Index.