Liquid biofuel production /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ : Beverly, MA :
John Wiley & Sons, Inc. ; Scrivener Publishing, LLC,
[2019]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1 Process Engineering Biofuel Production 1 Opubo Gbanaye Benebo; 1.1 Biofuel Production Background 1; 1.1.1 General Limitations 2; 1.1.2 Limitation of Cashcrop Raw Material 4; 1.1.3 Limitations of Algae Raw Materials Remediation 5; 1.1.4 Limitations Remediation 5; 1.2 Process Engineering Liquid Biofuel Production 8; 1.2.1 Algae Cultivation Assessment 8; 1.2.2 Algal Cultivation Inefficiencies Remediation 11; 1.2.3 Technology Development 12; 1.2.4 Lessons from the Algae Biofuel Industry Collapse 13; 1.2.5 Process Development Norms 14; 1.2.6 Research Team 15; 1.2.7 Alga Cultivation General Issues 16; 1.2.8 Biofuel Process Technology 17; 1.3 Algal Cultivation Process Technology 18; 1.3.1 Cellular Reaction Kinetics Analysis 19; 1.3.2 Cultivation Bench-Scale Model Design 20; 1.3.3 Cultivation Bioreactor 21; 1.3.4 Concentrator Harvesting of Cells 21; 1.3.5 Cell Rupture Technology 21; 1.3.6 BioFeedstock Separation Process 22; 1.3.7 Bench-Scale Cultivation Process Technology 23; 1.3.8 Process Technology Financial Viability Design 23; 1.3.9 Process Technology Sustainability Engineering 24; 1.3.10 Process Technology Optimization Engineering 25; 1.3.11 Base Cultivation Process Technology 26; 1.4 Algal Biomass Biorefinery Process Engineering 26; 1.4.1 Resourcing Algal Biomass 27; 1.4.2 Microbes Nutrients-Feed Production 28; 1.4.3 Fermentation Process Technology 28; 1.4.4 Biodiesel Process Technology 29; 1.4.5 Biorefinery Process Technology 29; 1.4.6 Engineering Cost Impact Analysis 30; Acknowledgment 32; About the Author 33; References 34; 2 A Renewable Source of Hydrocarbons and High Value Co-Products from Algal Biomass 35; Abhishek Walia, Samriti Sharma and Saruchi; 2.1 Introduction 36; 2.2 Algal Biomass Production 38; 2.2.1 Growth Conditions 38; 2.2.1.1 Temperature 38; 2.2.1.2 Light Intensity 38; 2.2.1.3 pH 39; 2.2.1.4 Aeration and Mixing 39; 2.2.1.5 Salinity 39; 2.2.2 Photoautotrophic Production 40; 2.2.2.1 Open Pond Production Pathway 40; 2.2.2.2 Closed Photobioreactor Systems 40; 2.2.3 Harvesting and Dewatering of Algal Biomass 42; 2.2.3.1 Flocculation 42; 2.2.3.2 Chemical Flocculation 42; 2.2.3.3 Electroflocculation 42; 2.2.3.4 Biofloculation 43; 2.2.3.5 Magnetic Separation of Algae 43; 2.2.3.6 Dissolved Air Flotation 43; 2.2.3.7 Filtration 43; 2.2.3.8 Centrifugation 43; 2.2.3.9 Attachment/Biofilm-Based Systems 44; 2.3 Developments in Algal Cultivation for Fuel By Using Different Production System 44; 2.3.1 Stirred Tank Photobioreactor 45; 2.3.2 Vertical Tubular Photobioreactors 45; 2.3.2.1 Bubble Column 45; 2.3.2.2 Airlift Reactors 46; 2.3.3 Horizontal Tubular Photobioreactors 46; 2.3.4 Flat Panel Photobioreactor 47; 2.4 Algal Biofuels
- Feedstock of the Future 48; 2.4.1 Biohydrogen 49; 2.4.2 Biobutanol 49; 2.4.3 Jet Fuel 50; 2.4.4 Biogas 50; 2.4.5 Bioethanol 51; 2.5 Biofuel Pathways 51; 2.5.1 Thermo-Chemical Conversion 52; 2.5.2 Biochemical Conversion 52; 2.5.3 Alcoholic Fermentation 53; 2.5.4 Biophotolysis 53; 2.6 High Value Co-Products from Algal Biomass 53; 2.6.1 Algae in Human Nutrition 54; 2.6.2 Algae in Animal and Aquaculture Feed 54; 2.6.3 Algae as Fertilizer 55; 2.6.4 Algae as Recombinant Protein 56; 2.6.5 Algae as Polyunsaturated Fatty Acids (PUFAs) 56; 2.7 Microalgae in Wastewater Treatment 57; 2.8 Economics of Algae Cultivation 58; 2.9 Problems and Potential of Alga-Culture 61; 2.10 Conclusion 63; References 64; <b>3 Waste Biomass Utilization for Liquid Fuels: Challenges & Solution 73<br /> </b><i>Sourish Bhattacharya, Surajbhan Sevda, Pooja Bachani, Vamsi Bharadwaj and Sandhya Mishra</i>; 3.1 Introduction 74; 3.2 Waste Biomass and its Types 75; 3.3 Major Waste Biomass Conversion Routes 76; 3.4 Metabolic Engineering in Yeast for Accumulation of C5; Sugars along with C6 Sugars 77; 3.5 Genetic Engineering for Improved Xylose Fermentation by Yeasts 77; 3.6 Biofuel from Microalgae through Mixotrophic Approach Utilizing Lignocellulosic Hydrolysate 80; 3.7 Conclusion 82; References 83; <b>4 Biofuel Production from Lignocellulosic Feedstock via Thermochemical Routes 89; Long T. Duong, Phuet Prasertcharoensuk and Anh N. Phan; 4.1 Introduction 89; 4.2 Fast Pyrolysis 92; 4.2.1 Principles 92; 4.2.2 Reactors 92; 4.2.2.1 Bubbling Fluid Bed 94; 4.2.2.2 Circulating Fluid Bed 94; 4.2.2.3 Rotating Cone 100; 4.2.2.4 Ablative Pyrolysis 100; 4.2.2.5 Screw Reactor 101; 4.2.2.6 Other Reaction Systems 102; 4.2.3 Bio-Oil Composition and Properties 103; 4.2.4 Factors Affecting on Biomass Pyrolysis 105; 4.2.4.1 Feedstock 105; 4.2.4.2 Biomass Pre-Treatment 105; 4.2.4.3 Temperature and Carrier Gas Flow Rate 110; 4.3 Bio-Oil Upgrading 111; 4.3.1 Hydrodeoxygenation 111; 4.3.2 Catalytic Cracking 114; 4.3.3 Fast Hydropyrolysis 116; 4.3.4 Cold Plasma 117; 4.4 Gasification 126; 4.4.1 Types of Gasifier 130; 4.4.1.1 Fixed Bed Gasifier 130; 4.4.1.2 Fluidized Bed Gasifier 135; 4.4.1.3 Entrained Flow Gasifier 137; 4.4.2 Influence of Operating Parameters on Gasification Process 138; 4.4.2.1 Equivalence Ratio 138; 4.4.2.2 Steam to Biomass Ratio 138; 4.4.2.3 Gasifying Agents 139; 4.4.2.4 Gasification Temperature 139; 4.5 Fischer-Tropsch Synthesis 140; 4.5.1 Fischer-Tropsch Reactors 140; 4.5.1.1 Multi-Tubular Fixed Bed 141; 4.5.1.2 Slurry Bubble Column 141; 4.5.1.3 Fluidized Bed 143; 4.5.2 Catalysts 143; 4.5.3 Influence of Operating Parameters on Fisher-Tropsch Synthesis 145; 4.6 Summary 147; References 148; 5 Exploring the Potential of Carbohydrate Rich Algal Biomass as Feedstock for Bioethanol Production 167 Jaskiran Kaur and Yogalakshmi K.N.</i>; 5.1 Introduction 168; 5.2 Microalgae and Macroalgae as Bioethanol Feedstock 169; 5.3 Process Involved for Production of Bioethanol from Algae 176; 5.4 Algal Biomass Cultivation 177; 5.4.1 Open Pond Systems 177; 5.4.2 Closed Photobioreactors (PBR) 179; 5.5 Pretreatment of Algal Biomass 180; 5.5.1 Physical Pretreatment 181; 5.5.2 Chemical Pretreatment 182; 5.5.3 Biological Pretreatment 183; 5.6 Fermentation of Algal Hydrolysate 183; 5.7 Distillation 184; 5.8 Manipulation of Algal Biomass 185; 5.9 Pros and Cons of Bioethanol Production from Algae 186; 5.10 Conclusions 187; References 187; 6 Development of Acid-Base-Enzyme Pretreatment and Hydrolysis of Palm Oil Mill Effluent for Bioethanol Production 197; Nibedita Deb, Md. Zahangir Alam, Maan Fahmi Rashid Al-khatib and Amal Elgharbawy; 6.1 Introduction 198; 6.2 Biomass Energy 200; 6.3 Palm Oil Mill Effluent (POME) 201; 6.4 Pome Characterization 203; 6.5 Pretreatment 203; 6.5.1 Physical and Physicochemical Pretreatment 204; 6.5.2 Chemical Pretreatment 205; 6.5.3 Biological Pretreatment 206; 6.6 Hydrolysis 206; 6.6.1 Concentrated Acid Hydrolysis 206; 6.6.2 Dilute Acid Hydrolysis 207; 6.6.3 Base Hydrolysis 207