Cargando…

Data Fusion in Wireless Sensor Networks : a statistical signal processing perspective /

This book describes the advanced tools required to design state-of-the-art inference algorithms for inference in wireless sensor networks. Written for the signal processing, communications, sensors and information fusion research communities, it covers the emerging area of data fusion in wireless se...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ciuonzo, Domenico (Editor ), Rossi, Pierluigi Salvo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Stevenage : Institution of Engineering & Technology, 2019.
Colección:IET control, robotics and sensors series ; 117.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1097977001
003 OCoLC
005 20231027140348.0
006 m o d
007 cr |n|||||||||
008 190420s2019 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d UKAHL  |d STF  |d OCLCO  |d CDN  |d OCLCF  |d UIU  |d YDX  |d KNOVL  |d N$T  |d OCLCQ  |d VLB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1091845964  |a 1197780734 
020 |a 9781785615856  |q (electronic bk.) 
020 |a 1785615858  |q (electronic bk.) 
020 |a 9781523123193  |q (electronic bk.) 
020 |a 1523123192  |q (electronic bk.) 
020 |z 9781785615849 
020 |z 178561584X 
029 1 |a AU@  |b 000065261018 
029 1 |a AU@  |b 000065306783 
035 |a (OCoLC)1097977001  |z (OCoLC)1091845964  |z (OCoLC)1197780734 
050 4 |a TK7872.D48  |b D38 2019eb 
082 0 4 |a 681.2  |2 23 
049 |a UAMI 
100 1 |a Ciuonzo, Domenico,  |e editor 
245 1 0 |a Data Fusion in Wireless Sensor Networks :  |b a statistical signal processing perspective /  |c edited by Domenico Ciuonzo, Pierluigi Salvo Rossi 
264 1 |a Stevenage :  |b Institution of Engineering & Technology,  |c 2019. 
300 |a 1 online resource (349 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IET control, robotics and sensors series 
588 0 |a Print version record. 
505 0 |a Intro; Contents; About the editors; List of contributors; Introduction; Part I. Sensing model uncertainty; 1. Generalized score-tests for decision fusion with sensing model uncertainty -- Domenico Ciuonzo, Pierluigi Salvo Rossi, and Peter Willett; 1.1 Uncertainty in decision fusion sensing model; 1.2 Problem statement; 1.2.1 Sensing model; 1.2.2 Local processing and reporting; 1.2.3 Resulting hypothesis testing; 1.2.4 Background on clairvoyant LLR; 1.3 Design of generalized score tests; 1.3.1 Counting rule (CR) and GLRT; 1.3.2 Generalized score tests; 1.3.3 Computational complexity 
505 8 |a 1.4 Quantizer design1.5 Conclusions and further reading; A.1 Appendix: Sketch of generalized score tests derivation; References; 2. Compressed distributed detection and estimation -- Thakshila Wimalajeewa and Pramod K. Varshney; 2.1 Introduction; 2.2 Compressive sensing: background; 2.3 Compressed detection; 2.3.1 CS-based detection of known deterministic signals in the presence of iid noise; 2.3.2 CS-based detection of unknown sparse signals in the presence of iid noise; 2.3.3 CS-based detection of random Gaussian signals in the presence of iid noise 
505 8 |a 2.3.4 CS-based detection with multimodal data with arbitrary pdfs2.4 Compressed parameter estimation; 2.4.1 Parameter estimation with compressed data with iid Gaussian noise; 2.4.2 Parameter estimation with compressed data with general Gaussian model; 2.5 Summary; References; 3. Heterogeneous sensor data fusion by deep learning -- Zuozhu Liu, Wenyu Zhang, Shaowei Lin, and Tony Q.S. Quek; 3.1 Introduction; 3.2 Challenges in heterogeneous sensor data fusion; 3.2.1 Compressive representation learning; 3.2.2 Missing data imputation; 3.2.3 Inter- and intra-modal correlations 
505 8 |a 3.3 Deep learning techniques for heterogeneous sensor data fusion3.3.1 Stacked autoencoder; 3.3.2 Deep multimodal encoder; 3.3.3 More neural network architectures; 3.4 A case study; 3.4.1 Dataset; 3.4.2 Data preprocessing; 3.4.3 Task 1: sensor data compression and reconstruction; 3.4.4 Task 2: missing data imputation; 3.5 Summary; Acknowledgments; References; Part II. Reporting channel uncertainty; 4. Energy-efficient clustering and collision-aware distributed detection/estimation in random-access-based WSNs -- Seksan Laitrakun, Deepa Phanish, and Edward J. Coyle 
505 8 |a 4.1 Clustering in wireless sensor networks4.1.1 Communication cost in multi-hop multilevel clusters; 4.1.2 Optimal probabilities of electing clusterheads; 4.2 Histogram-frame-based random access; 4.2.1 System model; 4.2.2 Protocol description; 4.2.3 Mathematical model; 4.3 Collision-aware fusion rule for distributed detection in a simple binary hypothesis testing problem; 4.4 Collision-aware fusion rule for distributed detection in a composite hypothesis testing problem; 4.5 Collision-aware fusion rule for distributed estimation; 4.6 Conclusions and extensions; References 
505 8 |a 5. Channel-aware decision fusion in MIMO wireless sensor networks -- Domenico Ciuonzo and Pierluigi Salvo Rossi 
520 |a This book describes the advanced tools required to design state-of-the-art inference algorithms for inference in wireless sensor networks. Written for the signal processing, communications, sensors and information fusion research communities, it covers the emerging area of data fusion in wireless sensor networks. 
504 |a Includes bibliographical references and index. 
590 |a Knovel  |b ACADEMIC - Electronics & Semiconductors 
590 |a Knovel  |b ACADEMIC - Software Engineering 
650 0 |a Detectors. 
650 0 |a Signal processing  |x Digital techniques  |x Data processing. 
650 0 |a Wireless sensor networks. 
650 6 |a Traitement du signal  |x Techniques numériques  |x Informatique. 
650 6 |a Réseaux de capteurs sans fil. 
650 7 |a Detectors.  |2 fast  |0 (OCoLC)fst00891594 
650 7 |a Signal processing  |x Digital techniques  |x Data processing.  |2 fast  |0 (OCoLC)fst01118288 
650 7 |a Wireless sensor networks.  |2 fast  |0 (OCoLC)fst01746575 
650 7 |a Internet of Things.  |2 inspect 
650 7 |a sensor fusion.  |2 inspect 
650 7 |a telecommunication power management.  |2 inspect 
650 7 |a wireless sensor networks.  |2 inspect 
700 1 |a Rossi, Pierluigi Salvo,  |e editor 
776 0 8 |i Print version:  |a Ciuonzo, Domenico.  |t Data Fusion in Wireless Sensor Networks : A Statistical Signal Processing Perspective.  |d Stevenage : Institution of Engineering & Technology, ©2019  |z 9781785615849 
830 0 |a IET control, robotics and sensors series ;  |v 117. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpDFWSNASP/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35420892 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5749960 
938 |a EBSCOhost  |b EBSC  |n 2094602 
938 |a YBP Library Services  |b YANK  |n 16145209 
994 |a 92  |b IZTAP