Mathematical methods for physics : using MATLAB & Maple /
This book may be used by students and professionals in physics and engineering that have completed first-year calculus and physics. An introductory chapter reviews algebra, trigonometry, units and complex numbers that are frequently used in physics. Examples using MATLAB and Maple for symbolic and n...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Dulles, Virginia :
Mercury Learning & Information,
[2018]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1.1. Algebra
- 1.1.1. Systems of Equations
- 1.1.2.Completing the Square
- 1.1.3.Common Denominator
- 1.1.4. Partial Fractions Decomposition
- 1.1.5. Inverse Functions
- 1.1.6. Exponential and Logarithmic Equations
- 1.1.7. Logarithms of Powers, Products and Ratios
- 1.1.8. Radioactive Decay
- 1.1.9. Transcendental Equations
- 1.1.10. Even and Odd Functions
- 1.1.11. Examples in Maple
- 1.2. Trigonometry
- 1.2.1. Polar Coordinates
- 1.2.2.Common Identities
- 1.2.3. Law of Cosines
- 1.2.4. Systems of Equations
- 1.2.5. Transcendental Equations
- 1.3.Complex Numbers
- 1.3.1.Complex Roots
- 1.3.2.Complex Arithmetic
- 1.3.3.Complex Conjugate
- 1.3.4. Euler's Formula
- 1.3.5.Complex Plane
- 1.3.6. Polar Form of Complex Numbers
- 1.3.7. Powers of Complex Numbers
- 1.3.8. Hyperbolic Functions
- 1.4. Elements of Calculus
- 1.4.1. Derivatives
- 1.4.2. Prime and Dot Notation
- 1.4.3. Chain Rule for Derivatives
- Note continued: 1.4.4. Product Rule for Derivatives
- 1.4.5. Quotient Rule for Derivatives
- 1.4.6. Indefinite Integrals
- 1.4.7. Definite Integrals
- 1.4.8.Common Integrals and Derivatives
- 1.4.9. Derivatives of Trigonometric and Hyperbolic Functions
- 1.4.10. Euler's Formula
- 1.4.11. Integrals of Trigonometric and Hyperbolic Functions
- 1.4.12. Improper Integrals
- 1.4.13. Integrals of Even and Odd Functions
- 1.5. MATLAB Examples
- 1.5.1. Functional Calculator
- 1.6. Exercises
- 2.1. Vectors and Scalars in Physics
- 2.1.1. Vector Addition and Unit Vectors
- 2.1.2. Scalar Product of Vectors
- 2.1.3. Vector Cross Product
- 2.1.4. Triple Vector Products
- 2.1.5. The Position Vector
- 2.1.6. Expressing Vectors in Different Coordinate Systems
- 2.2. Matrices in Physics
- 2.2.1. Matrix Dimension
- 2.2.2. Matrix Addition and Subtraction
- 2.2.3. Matrix Integration and Differentiation
- 2.2.4. Matrix Multiplication and Commutation
- 2.2.5. Direct Product
- Note continued: 2.2.6. Identity Matrix
- 2.2.7. Transpose of a Matrix
- 2.2.8. Symmetric and Antisymmetric Matrices
- 2.2.9. Diagonal Matrix
- 2.2.10. Tridiagonal Matrix
- 2.2.11. Orthogonal Matrices
- 2.2.12.Complex Conjugate of a Matrix
- 2.2.13. Matrix Adjoint (Hermitian Conjugate)
- 2.2.14. Unitary Matrix
- 2.2.15. Partitioned Matrix
- 2.2.16. Matrix Trace
- 2.2.17. Matrix Exponentiation
- 2.3. Matrix Determinant and Inverse
- 2.3.1. Matrix Inverse
- 2.3.2. Singular Matrices
- 2.3.3. Systems of Equations
- 2.4. Eigenvalues and Eigenvectors
- 2.4.1. Matrix Diagonalization
- 2.5. Rotation Matrices
- 2.5.1. Rotations in Two Dimensions
- 2.5.2. Rotations in Three Dimensions
- 2.5.3. Infinitesimal Rotations
- 2.6. MATLAB Examples
- 2.7. Exercises
- 3.1. Single-Variable Calculus
- 3.1.1. Critical Points
- 3.1.2. Integration with Substitution
- 3.1.3. Work-Energy Theorem
- 3.1.4. Integration by Parts
- 3.1.5. Integration with Partial Fractions
- Note continued: 3.1.6. Integration by Trig Substitution
- 3.1.7. Differentiating Across the Integral Sign
- 3.1.8. Integrals of Logarithmic Functions
- 3.2. Multivariable Calculus
- 3.2.1. Partial Derivatives
- 3.2.2. Critical Points
- 3.2.3. Double Integrals
- 3.2.4. Triple Integrals
- 3.2.5. Orthogonal Coordinate Systems
- 3.2.6. Cartesian Coordinates
- 3.2.7. Cylindrical Coordinates
- 3.2.8. Spherical Coordinates
- 3.2.9. Line, Volume, and Surface Elements
- 3.3. Gaussian Integrals
- 3.3.1. Error Functions
- 3.4. Series and Approximations
- 3.4.1. Geometric Series
- 3.4.2. Taylor Series
- 3.4.3. Maclaurin Series
- 3.4.4. Index Labels
- 3.4.5. Convergence of Series
- 3.4.6. Ratio Test
- 3.4.7. Integral Test
- 3.4.8. Binomial Theorem
- 3.4.9. Binomial Approximations
- 3.5. Special Integrals
- 3.5.1. Integral Functions
- 3.5.2. Elliptic Integrals
- 3.5.3. Gamma Functions
- 3.5.4. Riemann Zeta Function
- 3.5.5. Writing Integrals in Dimensionless Form
- Note continued: 3.5.6. Black-Body Radiation
- 3.6. MATLAB Examples
- 3.7. Exercises
- 4.1. Vector and Scalar Fields
- 4.1.1. Scalar Fields
- 4.1.2. Vector Fields
- 4.1.3. Field Lines
- 4.2. Gradient of Scalar Fields
- 4.2.1. Gradient in Cartesian Coordinates
- 4.2.2. Unit Normal
- 4.2.3. Gradient in Curvilinear Coordinates
- 4.2.4. Cylindrical Coordinates
- 4.2.5. Spherical Coordinates
- 4.2.6. Scalar Field from the Gradient
- 4.3. Divergence of Vector Fields
- 4.3.1. Flux through a Surface
- 4.3.2. Divergence of a Vector Field
- 4.3.3. Gradient in Curvilinear Coordinates
- 4.3.4. Cylindrical Coordinates
- 4.3.5. Spherical Coordinates
- 4.4. Curl of Vector Fields
- 4.4.1. Line Integral
- 4.4.2. Curl of a Vector Field
- 4.4.3. Curl in Cartesian Coordinates
- 4.4.4. Curl in Curvilinear Coordinates
- 4.4.5. Cylindrical Coordinates
- 4.4.6. Spherical Coordinates
- 4.4.7. Vector Potential
- 4.5. Laplacian of Scalar and Vector Fields
- Note continued: 4.5.1. Laplacian in Curvilinear Coordinates
- 4.5.2. Cylindrical Coordinates
- 4.5.3. Spherical Coordinates
- 4.5.4. The Vector Laplacian
- 4.6. Vector Identities
- 4.6.1. First Derivatives
- 4.6.2. First Derivatives of Products
- 4.6.3. Second Derivatives
- 4.6.4. Vector Laplacian
- 4.7. Integral Theorems
- 4.7.1. Gradient Theorem
- 4.7.2. Divergence Theorem
- 4.7.3. Cartesian Coordinates
- 4.7.4. Cylindrical Coordinates
- 4.7.5. Stokes's Curl Theorem
- 4.7.6. Navier-Stokes Equation
- 4.8. MATLAB Examples
- 4.9. Exercises
- 5.1. Classification of Differential Equations
- 5.1.1. Order
- 5.1.2. Degree
- 5.1.3. Solution by Direct Integration
- 5.1.4. Exact Differential Equations
- 5.1.5. Sturm-Liouville Form
- 5.2. First Order Differential Equations
- 5.2.1. Homogeneous Equations
- 5.2.2. Inhomogeneous Equations
- 5.3. Linear, Homogeneous with Constant Coefficients
- 5.3.1. Damped Harmonic Oscillator
- 5.3.2. Undamped Motion
- Note continued: 5.3.3. Overdamped Motion
- 5.3.4. Underdamped Motion
- 5.3.5. Critically Damped Oscillator
- 5.3.6. Higher Order Differential Equations
- 5.4. Linear Independence
- 5.4.1. Wronskian Determinant
- 5.5. Inhomogeneous with Constant Coefficients
- 5.6. Power Series Solutions to Differential Solutions
- 5.6.1. Standard Form
- 5.6.2. Airy's Differential Equation
- 5.6.3. Hermite's Differential Equation
- 5.6.4. Singular Points
- 5.6.5. Bessel's Differential Equation
- 5.6.6. Legendre's Differential Equation
- 5.7. Systems of Differential Equations
- 5.7.1. Homogeneous Systems
- 5.7.2. Inhomogeneous Systems
- 5.7.3. Solution Vectors
- 5.7.4. Test for Linear Independence
- 5.7.5. General Solution of Homogeneous Systems
- 5.7.7. Charged Particle in Electric and Magnetic Fields
- 5.8. Phase Space
- 5.8.1. Phase Plots
- 5.8.2. Noncrossing Property
- 5.8.3. Autonomous Systems
- 5.8.4. Phase Space Volume
- 5.9. Nonlinear Differential Equations
- Note continued: 5.9.1. Predator-Prey System
- 5.9.2. Fixed Points
- 5.9.3. Linearization
- 5.9.4. Simple Pendulum
- 5.9.5. Numerical Solution
- 5.10. MATLAB Examples
- 5.11. Exercises
- 6.1. Dirac Delta Function
- 6.1.1. Representations of the Delta Function
- 6.1.2. Delta Function in Higher Dimensions
- 6.1.3. Delta Function in Spherical Coordinates
- 6.1.4. Poisson's Equation
- 6.1.5. Differential Form of Gauss's Law
- 6.1.6. Heaviside Step Function
- 6.2. Orthogonal Functions
- 6.2.1. Expansions in Orthogonal Functions
- 6.2.2.Completeness Relation
- 6.3. Legendre Polynomials
- 6.3.1. Associated Legendre Polynomials
- 6.3.2. Rodrigues' Formulas
- 6.3.3. Generating Functions
- 6.3.4. Orthogonality Relations
- 6.3.5. Spherical Harmonics
- 6.4. Laguerre Polynomials
- 6.4.1. Rodrigues' Formula
- 6.4.2. Generating Function
- 6.4.3. Orthogonality Relations
- 6.5. Hermite Polynomials
- 6.5.1. Rodrigues' Formula
- 6.5.2. Generating Function
- Note continued: 6.5.4. Orthogonality
- 6.6. Bessel Functions
- 6.6.1. Modified Bessel Functions
- 6.6.2. Generating Function
- 6.6.3. Spherical Bessel Functions
- 6.6.4. Rayleigh Formulas
- 6.6.5. Generating Functions
- 6.6.6. Useful Relations
- 6.7. MATLAB Examples
- 6.8. Exercises
- 7.1. Fourier Series
- 7.1.1. Fourier Cosine Series
- 7.1.2. Fourier Sine Series
- 7.1.3. Fourier Exponential Series
- 7.2. Fourier Transforms
- 7.2.1. Power Spectrum
- 7.2.2. Spatial Transforms
- 7.3. Laplace Transforms
- 7.3.1. Properties of the Laplace Transform
- 7.3.2. Inverse Laplace Transform
- 7.3.3. Properties of Inverse Laplace Transforms
- 7.3.4. Table of Laplace Transforms
- 7.3.5. Solving Differential Equations
- 7.4. MATLAB Examples
- 7.5. Exercises
- 8.1. Types of Partial Differential Equations
- 8.1.1. First Order PDEs
- 8.1.2. Second Order PDEs
- 8.1.3. Laplace's Equation
- 8.1.4. Poisson's Equation
- 8.1.5. Diffusion Equation
- 8.1.6. Wave Equation
- Note continued: 8.1.7. Helmholtz Equation
- 8.1.8. Klein-Gordon Equation
- 8.2. The Heat Equation
- 8.2.1. Transient Heat Flow
- 8.2.2. Steady State Heat Flow
- 8.2.3. Laplace Transform Solution
- 8.3. Separation of Variables
- 8.3.1. The Heat Equation
- 8.3.2. Laplace's Equation in Cartesian Coordinates
- 8.3.3. Laplace's Equation in Cylindrical Coordinates
- 8.3.4. Wave Equation
- 8.3.5. Helmholtz Equation in Cylindrical Coordinates
- 8.3.6. Helmholtz Equation in Spherical Coordinates
- 8.4. MATLAB Examples
- 8.5. Exercises
- 9.1. Cauchy-Riemann Equations
- 9.1. Laplace's Equation
- 9.2. Integral Theorems
- 9.2.1. Cauchy's Integral Theorem
- 9.2.2. Cauchy's Integral Formula
- 9.2.3. Laurent Series Expansion
- 9.2.4. Types of Singularities
- 9.2.5. Residues
- 9.2.6. Residue Theorem
- 9.2.7. Improper Integrals
- 9.2.8. Fourier Transform Integrals
- 9.3. Conformal Mapping
- 9.3.1. Poisson's Integral Formulas
- Note continued: 9.3.2. Schwarz-Christoffel Transformation
- 9.3.3. Conformal Mapping
- 9.3.4. Mappings on the Riemann Sphere
- 9.4. MATLAB Examples
- 9.5. Exercises
- 10.1. Velocity-Dependent Resistive Forces
- 10.1.1. Drag Force Proportional to the Velocity
- 10.1.2. Drag Force on a Falling Body
- 10.2. Variable Mass Dynamics
- 10.2.1. Rocket Motion
- 10.3. Lagrangian Dynamics
- 10.3.1. Calculus of Variations
- 10.3.2. Lagrange's Equations of Motion
- 10.3.3. Lagrange's Equations with Constraints
- 10.4. Hamiltonian Mechanics
- 10.4.1. Legendre Transformation
- 10.4.2. Hamilton's Equations of Motion
- 10.4.3. Poisson Brackets
- 10.5. Orbital and Periodic Motion
- 10.5.1. Kepler Problem
- 10.5.2. Periodic Motion
- 10.5.3. Small Oscillations
- 10.6. Chaotic Dynamics
- 10.6.1. Strange Attractors
- 10.6.2. Lorenz Model
- 10.6.3. Jerk Systems
- 10.6.4. Time Delay Coordinates
- 10.6.5. Lyapunov Exponents
- 10.6.6. Poincare Sections
- 10.7. Fractals
- Note continued: 10.7.1. Cantor Set
- 10.7.2. Koch Snowflake
- 10.7.3. Mandelbrot Set
- 10.7.4. Fractal Dimension
- 10.7.5. Chaotic Maps
- 10.8. MATLAB Examples
- 10.9. Exercises
- 11.1. Electrostatics in 1D
- 11.1.1. Integral and Differential Forms of Gauss's Law
- 11.1.2. Laplace's Equation in 1D
- 11.1.3. Poisson's Equation in 1D
- 11.2. Laplace's Equation in Cartesian Coordinates
- 11.2.1.3D Cartesian Coordinates
- 11.2.2. Method of Images
- 11.3. Laplace's Equation in Cylindrical Coordinates
- 11.3.1. Potentials with Planar Symmetry
- 11.3.2. Potentials in 3D Cylindrical Coordinates
- 11.4. Laplace's Equation in Spherical Coordinates
- 11.4.1. Axially Symmetric Potentials
- 11.4.2.3D Spherical Coordinates
- 11.5. Multipole Expansion of Potential
- 11.5.1. Axially Symmetric Potentials
- 11.5.2. Off-Axis Trick
- 11.5.3. Asymmetric Potentials
- 11.6. Electricity and Magnetism
- 11.6.1.Comparison of Electrostatics and Magnetostatics
- Note continued: 11.6.2. Electrostatic Examples
- 11.6.3. Magnetostatic Examples
- 11.6.4. Static Electric and Magnetic Fields in Matter
- 11.6.5. Examples: Electrostatic Fields in Matter
- 11.6.6. Examples: Magnetic Fields in Matter
- 11.7. Scalar Electric and Magnetic Potentials
- 11.8. Time-Dependent Fields
- 11.8.1. The Ampere-Maxwell Equation
- 11.8.2. Maxwell's Equations
- 11.8.3. Self-Inductance
- 11.8.4. Mutual Inductance
- 11.8.5. Maxwell's Wave Equations
- 11.8.6. Maxwell's Equations in Matter
- 11.8.7. Time Harmonic Maxwell's Equations
- 11.8.8. Magnetic Monopoles
- 11.9. Radiation
- 11.9.1. Poynting Vector
- 11.9.2. Inhomogeneous Wave Equations
- 11.9.3. Gauge Transformation
- 11.9.4. Radiation Potential Formulation
- 11.9.5. The Hertz Dipole Antenna
- 11.10. MATLAB Examples
- 11.11. Exercises
- 12.1. Schrodinger Equation
- 12.1.1. Time-Dependent Schrodinger Equation
- 12.1.2. Time-Independent Schrodinger Equation
- Note continued: 12.1.3. Operators, Expectation Values and Uncertainty
- 12.1.4. Probability Current Density
- 12.2. Bound States I
- 12.2.1. Particle in a Box
- 12.2.2. Semi-Infinite Square Well
- 12.2.3. Square Well with a Step
- 12.3. Bound States II
- 12.3.1. Delta Function Potential
- 12.3.2. Quantum Bouncer
- 12.3.3. Harmonic Oscillator
- 12.3.4. Operator Notation
- 12.3.5. Excited States of the Harmonic Oscillator
- 12.4. Schrodinger Equation in Higher Dimensions
- 12.4.1. Particle in a 3D Box
- 12.4.2. Schrodinger Equation in Spherical Coordinates
- 12.4.3. Radial Equation
- 12.4.4. Hydrogen Radial Wavefunctions
- 12.5. Approximation Methods
- 12.5.1. WKB Approximation
- 12.5.2. Time-Independent Perturbation Theory
- 12.5.3. Degenerate Perturbation Theory
- 12.5.4. Stark Effect
- 12.6. MATLAB Examples
- 12.7. Exercises
- 13.1. Microcanonical Ensemble
- 13.1.1. Number of Microstates and the Entropy
- 13.2. Canonical Ensemble
- Note continued: 13.2.1. Boltzmann Factor and Partition Function
- 13.2.2. Average Energy
- 13.2.3. Free Energy and Entropy
- 13.2.4. Specific Heat
- 13.2.5. Rigid Rotator
- 13.2.6. Harmonic Oscillator
- 13.2.7.Composite Systems
- 13.2.8. Stretching a Rubber Band
- 13.3. Continuous Energy Distributions
- 13.3.1. Partition Function and Average Energy
- 13.3.2. Particle in a Box
- 13.3.3. Maxwell-Boltzmann Distribution
- 13.3.4. Relativistic Gas
- 13.4. Grand Canonical Ensemble
- 13.4.1. Gibbs Factor
- 13.4.2. Average Energy and Particle Number
- 13.4.3. Single Species
- 13.4.4. Grand Potential
- 13.4.5.Comparison of Canonical and Grand Canonical Ensembles
- 13.4.6. Bose-Einstein Statistics
- 13.4.7. Black-Body Radiation
- 13.4.8. Debye Theory of Specific Heat
- 13.4.9. Fermi-Dirac Statistics
- 13.5. MATLAB Examples
- 13.6. Exercises
- 14.1. Kinematics
- 14.1.1. Postulates of Special Relativity
- 14.1.2. Time Dilatation
- 14.1.3. Length Contraction
- Note continued: 14.1.4. Relativistic Doppler Effect
- 14.1.5. Galilean Transformation
- 14.1.6. Lorentz Transformations
- 14.1.7. Relativistic Addition of Velocities
- 14.1.8. Velocity Addition Approximation
- 14.1.9.4-Vector Notation
- 14.2. Energy and Momentum
- 14.2.1. Newton's Second Law
- 14.2.2. Mass Energy and Kinetic Energy
- 14.2.3. Low Velocity Approximation
- 14.2.4. Energy Momentum Relation
- 14.2.5.Completely Inelastic Collisions
- 14.2.6. Particle Decay
- 14.2.7. Energy Units
- 14.3. Electromagnetics in Relativity
- 14.3.1. Relativistic Transformation of Fields
- 14.3.2. Covariant Formulation of Maxwell's Equations
- 14.3.3. Homogeneous Maxwell Equations
- 14.3.4. Lorentz Force Equation
- 14.4. Relativistic Lagrangian Formulation
- 14.4.1. Lagrangian of a Free Particle
- 14.4.2. Relativistic 1D Harmonic Oscillator
- 14.4.3. Charged Particle in Electric and Magnetic Fields
- 14.5. MATLAB Examples
- 14.6. Exercises
- Note continued: 15.1. The Equivalence Principle
- 15.1.1. Classical Approximation to Gravitational Redshift
- 15.1.2. Photon Emitted from a Spherical Star
- 15.1.3. Gravitational Time Dilation
- 15.1.4.Comparison of Time Dilation Factors
- 15.2. Tensor Calculus
- 15.2.1. Tensor Notation
- 15.2.2. Line Element and Spacetime Interval
- 15.2.3. Raising and Lowering Indices
- 15.2.4. Metric Tensor in Spherical Coordinates
- 15.2.5. Dot Product
- 15.2.6. Cross Product
- 15.2.7. Transformation Properties of Tensors
- 15.2.8. Quotient Rule for Tensors
- 15.2.9. Covariant Derivatives
- 15.3. Einstein's Equations
- 15.3.1. Geodesic Equations of Motion
- 15.3.2. Alternative Lagrangian
- 15.3.3. Riemann Curvature Tensor
- 15.3.4. Ricci Tensor
- 15.3.5. Ricci Scalar
- 15.3.6. Einstein Tensor
- 15.3.7. Einstein's Field Equations
- 15.3.8. Friedman Cosmology
- 15.3.9. Killing Vectors
- 15.4. MATLAB Examples
- 15.5. Exercises
- 16.1. Early Models
- 16.1.1.de Broglie waves
- Note continued: 16.1.2. Klein-Gordon Equation
- 16.1.3. Probability Current Density
- 16.1.4. Lagrangian Formulation of the Klein-Gordon Equation
- 16.2. Dirac Equation
- 16.2.1. Derivation of a First Order Equation
- 16.2.2. Probability Current
- 16.2.3. Gamma Matrices
- 16.2.4. Positive and Negative Energies
- 16.2.5. Lagrangian Formulation of the Dirac Equation
- 16.3. Solutions to the Dirac Equation
- 16.3.1. Plane Wave Solutions
- 16.3.2. Nonplane Wave Solutions
- 16.3.3. Nonrelativistic Limit
- 16.3.4. Dirac Equation in an Electromagnetic Field
- 16.4. MATLAB Examples
- 16.5. Exercises.