|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_on1083156994 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
190116s2020 nju ob 001 0 eng |
010 |
|
|
|a 2019002189
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d OCLCF
|d N$T
|d EBLCP
|d UKMGB
|d UKAHL
|d DLC
|d OCLCO
|d UBY
|d YDX
|d SFB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB9A9142
|2 bnb
|
016 |
7 |
|
|a 019431189
|2 Uk
|
019 |
|
|
|a 1103320299
|a 1103675819
|a 1106081573
|a 1110924518
|a 1113900442
|a 1153076391
|
020 |
|
|
|a 9781119518112
|q (Adobe PDF)
|
020 |
|
|
|a 1119518113
|
020 |
|
|
|a 9781119518099
|q (ePub)
|
020 |
|
|
|a 1119518091
|
020 |
|
|
|a 1523128437
|
020 |
|
|
|a 9781523128433
|
020 |
|
|
|z 9781119518082
|q (hardback)
|
020 |
|
|
|z 1119518083
|
029 |
1 |
|
|a AU@
|b 000065400586
|
029 |
1 |
|
|a AU@
|b 000067151588
|
029 |
1 |
|
|a UKMGB
|b 019431189
|
035 |
|
|
|a (OCoLC)1083156994
|z (OCoLC)1103320299
|z (OCoLC)1103675819
|z (OCoLC)1106081573
|z (OCoLC)1110924518
|z (OCoLC)1113900442
|z (OCoLC)1153076391
|
037 |
|
|
|a 9781119518099
|b Wiley
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a TJ267
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
0 |
|a 621.406
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Korpela, S. A.,
|e author.
|
245 |
1 |
0 |
|a Principles of turbomachinery /
|c Seppo A. Korpela, the Ohio State University.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a Hoboken, NJ, USA :
|b John Wiley & Sons, Inc.,
|c 2020.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher; resource not viewed.
|
505 |
0 |
|
|a <P>Foreword xv</p> <p>Acknowledgments xvii</p> <p><b>1 Introduction 1</b></p> <p>1.1 Energy and Fluid machines 1</p> <p>1.1.1 Energy conversion of fossil fuels 1</p> <p>1.1.2 Steam turbines 2</p> <p>1.1.3 Gas turbines 3</p> <p>1.1.4 Hydraulic turbines 4</p> <p>1.1.5 Wind turbines 5</p> <p>1.1.6 Compressors 5</p> <p>1.1.7 Pumps and blowers 5</p> <p>1.1.8 Other uses and issues 6</p> <p>1.2 Historical survey 7</p> <p>1.2.1 Water power 7</p> <p>1.2.2 Wind turbines 8</p> <p>1.2.3 Steam turbines 9</p> <p>1.2.4 Jet propulsion 10</p> <p>1.2.5 Industrial turbines 11</p> <p>1.2.6 Pumps and compressors 12</p> <p>1.2.7 Note on units 12</p> <p><b>2 Principles of Thermodynamics and Fluid Flow 15</b></p> <p>2.1 Mass conservation principle 15</p> <p>2.2 First law of thermodynamics 17</p> <p>2.3 Second law of thermodynamics 19</p> <p>2.3.1 Tds-equations 19</p> <p>2.4 Equations of state 20</p> <p>2.4.1 Properties of steam 20</p> <p>2.4.2 Ideal gases 27</p> <p>2.4.3 Air tables and isentropic relations 29</p> <p>2.4.4 Ideal gas mixtures 32</p> <p>2.4.5 Incompressibility 35</p> <p>2.4.6 Stagnation state 36</p> <p>2.5 Efficiency 36</p> <p>2.5.1 Efficiency measures 37</p> <p>2.5.2 Thermodynamic losses 42</p> <p>2.5.3 Incompressible fluid 44</p> <p>2.5.4 Compressible flows 45</p> <p>2.6 Momentum balance 47</p> <p>Exercises 54</p> <p><b>3 Compressible Flow 61</b></p> <p>3.1 Mach number and the speed of sound 61</p> <p>3.1.1 Mach number relations 63</p> <p>3.2 Isentropic ow with area change 65</p> <p>3.2.1 Converging nozzle 69</p> <p>3.3 Influence of friction on ow through nozzles 71</p> <p>3.3.1 Polytropic efficiency 71</p> <p>3.3.2 Loss coefficients 74</p> <p>3.3.3 Nozzle efficiency 78</p> <p>3.3.4 Combined Fanno ow and area change 79</p> <p>3.4 Supersonic nozzle and normal shocks 84</p> <p>3.4.1 Converging{diverging nozzle 84</p> <p>3.5 Normal Shocks 87</p> <p>3.5.1 Rankine{Hugoniot relations 92</p> <p>3.6 Moving shocks 94</p> <p>3.7 Oblique shocks and expansion fans 96</p> <p>3.7.1 Mach waves 97</p> <p>3.7.2 Oblique shocks 97</p> <p>3.7.3 Supersonic ow over a rounded concave corner 103</p> <p>3.7.4 Reected shocks and shock interactions 104</p> <p>3.7.5 Mach reflection 106</p> <p>3.7.6 Detached oblique shocks 107</p> <p>3.7.7 Prandtl{Meyer theory 109</p> <p>Exercises 120</p> <p><b>4 Gas dynamics of wet steam 125</b></p> <p>4.1 Compressible ow of wet steam 126</p> <p>4.1.1 Clausius-Clapeyron equation 126</p> <p>4.1.2 Adiabatic exponent 127</p> <p>4.2 Conservation equations for wet steam 131</p> <p>4.2.1 Relaxation times 132</p> <p>4.2.2 Conservation equations in their working form 137</p> <p>4.2.3 Sound speeds 139</p> <p>4.3 Relaxation zones 142</p> <p>4.3.1 Type I wave 143</p> <p>4.3.2 Type II wave 147</p> <p>4.3.3 Type III wave 149</p> <p>4.3.4 Combined relaxation 149</p> <p>4.3.5 Flow in a variable area nozzle 153</p> <p>4.4 Shocks in wet steam 154</p> <p>4.4.1 Evaporation in the ow after the shock 157</p> <p>4.5 Condensation shocks 161</p> <p>4.5.1 Jump conditions across a condensation shock 163</p> <p>Exercises 167</p> <p><b>5 Principles of Turbomachine Analysis 171</b></p> <p>5.1 Velocity triangles 172</p> <p>5.2 Moment of momentum balance 175</p> <p>5.3 Energy transfer in turbomachines 176</p> <p>5.3.1 Trothalpy and specific work in terms of velocities 180</p> <p>5.3.2 Degree of reaction 183</p> <p>5.4 Utilization 184</p> <p>5.5 Scaling and similitude 191</p> <p>5.5.1 Similitude 192</p> <p>5.5.2 Incompressible ow 192</p> <p>5.5.3 Shape parameter or specific speed and specific diameter 195</p> <p>5.5.4 Compressible ow analysis 200</p> <p>5.6 Performance characteristics 201</p> <p>5.6.1 Compressor performance map 201</p> <p>5.6.2 Turbine performance map 203</p> <p>Exercises 204</p> <p><b>6 Steam Turbines 209</b></p> <p>6.1 Introduction 209</p> <p>6.2 Impulse turbines 211</p> <p>6.2.1 Single-stage impulse turbine 211</p> <p>6.2.2 Pressure compounding 220</p> <p>6.2.3 Blade shapes 224</p> <p>6.2.4 Velocity compounding 226</p> <p>6.3 Stage with zero reaction 232</p> <p>6.4 Loss coefficients 234</p> <p>Exercises 236</p> <p><b>7 Axial Turbines 239</b></p> <p>7.1 Introduction 239</p> <p>7.2 Turbine stage analysis 241</p> <p>7.3 Flow and loading coefficients and reaction ratio 245</p> <p>7.3.1 Fifty percent (50%) stage 250</p> <p>7.3.2 Zero percent (0%) reaction stage 253</p> <p>7.3.3 O -- design operation 255</p> <p>7.3.4 Variable axial velocity 257</p> <p>7.4 Three-dimensional ow 258</p> <p>7.5 Radial equilibrium 259</p> <p>7.5.1 Free vortex ow 260</p> <p>7.5.2 Fixed blade angle 264</p> <p>7.6 Constant mass flux 264</p> <p>7.7 Turbine efficiency and losses 267</p> <p>7.7.1 Soderberg loss coefficients 267</p> <p>7.7.2 Stage efficiency 268</p> <p>7.7.3 Stagnation pressure losses 270</p> <p>7.7.4 Performance charts 275</p> <p>7.7.5 Zweifel correlation 279</p> <p>7.7.6 Further discussion of losses 281</p> <p>7.7.7 Ainley{Mathieson correlation 283</p> <p>7.7.8 Secondary loss 286</p> <p>7.8 Multistage turbine 291</p> <p>7.8.1 Reheat factor in a multistage turbine 291</p> <p>7.8.2 Polytropic or small-stage efficiency 294</p> <p>Exercises 295</p> <p><b>8 Axial Compressors 301</b></p> <p>8.1 Compressor stage analysis 302</p> <p>8.1.1 Stage temperature and pressure rise 303</p> <p>8.1.2 Analysis of a repeating stage 305</p> <p>8.2 Design deflection 311</p> <p>8.2.1 Compressor performance map 314</p> <p>8.3 Radial equilibrium 315</p> <p>8.3.1 Modified free vortex velocity distribution 316</p> <p>8.3.2 Velocity distribution with zero-power exponent 319</p> <p>8.3.3 Velocity distribution with first-power exponent 321</p> <p>8.4 Diffusion factor 322</p> <p>8.4.1 Momentum thickness of a boundary layer 324</p> <p>8.5 Efficiency and losses 328</p> <p>8.5.1 Efficiency 328</p> <p>8.5.2 Parametric calculations 331</p> <p>8.6 Cascade aerodynamics 333</p> <p>8.6.1 Blade shapes and terms 333</p> <p>8.6.2 Blade forces 334</p> <p>8.6.3 Other losses 337</p> <p>8.6.4 Diffuser performance 337</p> <p>8.6.5 Flow deviation and incidence 338</p> <p>8.6.6 Multi-stage compressor 340</p> <p>8.6.7 Compressibility effects 341</p> <p>8.6.8 Design of a compressor 342</p> <p>Stage 1. 343</p> <p>Exercises 348</p> <p><b>9 Centrifugal Compressors and Pumps 353</b></p> <p>9.1 Compressor analysis 354</p> <p>9.1.1 Slip factor 355</p> <p>9.1.2 Pressure ratio 357</p> <p>9.2 Inlet design 364</p> <p>9.2.1 Choking of the inducer 369</p> <p>9.3 Exit design 371</p> <p>9.3.1 Performance characteristics 371</p> <p>9.3.2 Diffusion ratio 374</p> <p>9.3.3 Blade height 375</p> <p>9.4 Vaneless diffuser 376</p> <p>9.5 Centrifugal pumps 381</p> <p>9.5.1 Specific speed and specific diameter 385</p> <p>9.6 Fans 393</p> <p>9.7 Cavitation 393</p> <p>9.8 Diffuser and volute design 396</p> <p>9.8.1 Vaneless diffuser 396</p> <p>9.8.2 Volute design 397</p> <p>Exercises 400</p> <p><b>10 Radial in Flow Turbines 405</b></p> <p>10.1 Turbine analysis 406</p> <p>10.2 Efficiency 411</p> <p>10.3 Specific speed and specific diameter 415</p> <p>10.4 Stator ow 421</p> <p>10.4.1 Loss coefficients for stator ow 425</p> <p>10.5 Design of the inlet of a radial in flow turbine 429</p> <p>10.5.1 Minimum inlet Mach number 430</p> <p>10.5.2 Blade stagnation Mach number 436</p> <p>10.5.3 Inlet relative Mach number 437</p> <p>10.6 Design of the Exit 438</p> <p>10.6.1 Minimum exit Mach number 439</p> <p>10.6.2 Radius ratio r3s=r2 440</p> <p>10.6.3 Blade height-to-radius ratio b2=r2 442</p> <p>10.6.4 Optimum incidence angle and the number of blades 443</p> <p>Exercises 448</p> <p><b>11 Hydraulic Turbin
|
590 |
|
|
|a Knovel
|b ACADEMIC - Mechanics & Mechanical Engineering
|
650 |
|
0 |
|a Turbomachines.
|
650 |
|
6 |
|a Turbomachines.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Turbomachines
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Korpela, S.A.
|t Principles of turbomachinery.
|b Second edition.
|d Hoboken, NJ, USA : John Wiley & Sons, Inc., 2019
|z 9781119518082
|w (DLC) 2019001992
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpPTE00022/toc
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35819809
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2149081
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 300572321
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 16253104
|
994 |
|
|
|a 92
|b IZTAP
|