Cargando…

Machine learning using R : with time series and industry-based uses in R /

Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ramasubramanian, Karthik (Autor), Singh, Abhishek, 1976- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [New York, New York] : Apress, [2019]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 KNOVEL_on1080081706
003 OCoLC
005 20231027140348.0
006 m o d
007 cr un|---aucuu
008 181222s2019 nyu o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d GW5XE  |d UAB  |d CAUOI  |d OCLCF  |d TEFOD  |d YDX  |d OH1  |d UKMGB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d FTB 
015 |a GBB965462  |2 bnb 
016 7 |a 019214957  |2 Uk 
019 |a 1079917856 
020 |a 9781484242155  |q electronic book 
020 |a 1484242157  |q electronic book 
020 |z 9781484242148 
020 |z 1484242149 
029 1 |a AU@  |b 000064815653 
029 1 |a AU@  |b 000065064787 
029 1 |a CHNEW  |b 001074031 
029 1 |a CHVBK  |b 579468402 
029 1 |a UKMGB  |b 019214957 
029 1 |a AU@  |b 000065203495 
035 |a (OCoLC)1080081706  |z (OCoLC)1079917856 
037 |a 8DADDBAD-32CF-439C-97AD-75DD6B6A173F  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5  |b .R36 2019 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Ramasubramanian, Karthik,  |e author. 
245 1 0 |a Machine learning using R :  |b with time series and industry-based uses in R /  |c Karthik Ramasubramanian, Abhishek Singh. 
250 |a Second edition. 
264 1 |a [New York, New York] :  |b Apress,  |c [2019] 
300 |a 1 online resource (xxiv, 700 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Chapter 1: Introduction to Machine Learning and R -- Chapter 2: Data Exploration and Preparation -- Chapter 3: Sampling and Resampling Techniques -- Chapter 4: Data Visualization in R -- Chapter 5: Feature Engineering -- Chapter 6: Machine Learning Theory and Practice -- Chapter 7: Machine Learning Model Evaluation -- Chapter 8: Model Performance Improvement -- Chapter 9: Time Series Modelling -- Chapter 10: Scalable Machine Learning and related technology -- Chapter 11: Deep Learning Models using Keras and TensorFlow. 
520 |a Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. You will: Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R. 
588 |a Description based on online resource; title from digital title page (viewed on June 26, 2023). 
590 |a Knovel  |b ACADEMIC - Software Engineering 
650 0 |a Machine learning. 
650 0 |a R (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a R (Langage de programmation) 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
700 1 |a Singh, Abhishek,  |d 1976-  |e author. 
776 0 8 |i Print version:  |a Ramasubramanian, Karthik.  |t Machine Learning Using R : With Time Series and Industry-Based Use Cases in R.  |d Berkeley, CA : Apress L.P., ©2018  |z 9781484242148 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpMLURWTS3/toc  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5614865 
938 |a YBP Library Services  |b YANK  |n 15901244 
994 |a 92  |b IZTAP