Cargando…

Engineering agile big-data systems /

To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Feeney, Kevin (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg : River Publishers, [2018]
Colección:River Publishers series in software engineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1079008279
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 181215s2018 dk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d MERUC  |d N$T  |d YDXIT  |d UPM  |d OCLCF  |d UKAHL  |d OCLCQ  |d OCLCO  |d K6U  |d IAI  |d OCLCO  |d OCLCQ  |d TYFRS  |d OCLCQ  |d SFB  |d OCLCQ  |d EBLCP  |d OCLCQ  |d TEFOD  |d OCLCQ  |d OCLCO 
019 |a 1076240440  |a 1280209439 
020 |a 8770220158 
020 |a 9788770220156  |q (electronic bk.) 
020 |a 1523139056 
020 |a 9781523139057 
020 |a 9781003338123  |q (electronic bk.) 
020 |a 1003338127  |q (electronic bk.) 
020 |a 9781000792546  |q (electronic bk. ;  |q EPUB) 
020 |a 1000792544  |q (electronic bk. ;  |q EPUB) 
020 |a 9781000795868  |q (electronic bk. ;  |q PDF) 
020 |a 1000795861  |q (electronic bk. ;  |q PDF) 
020 |z 8770220166 
020 |z 9788770220163 
024 7 |a 10.1201/9781003338123  |2 doi 
035 |a (OCoLC)1079008279  |z (OCoLC)1076240440  |z (OCoLC)1280209439 
037 |a 9781003338123  |b Taylor & Francis 
037 |a 585279A6-C6D2-41DB-8301-E0C441040F91  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.S88  |b E54 2018 
072 7 |a COM  |x 013000  |2 bisacsh 
072 7 |a COM  |x 014000  |2 bisacsh 
072 7 |a COM  |x 018000  |2 bisacsh 
072 7 |a COM  |x 067000  |2 bisacsh 
072 7 |a COM  |x 032000  |2 bisacsh 
072 7 |a COM  |x 037000  |2 bisacsh 
072 7 |a COM  |x 052000  |2 bisacsh 
072 7 |a COM  |x 051230  |2 bisacsh 
072 7 |a COM  |x 021030  |2 bisacsh 
072 7 |a UMZ  |2 bicssc 
082 0 4 |a 004.21  |2 23 
049 |a UAMI 
245 0 0 |a Engineering agile big-data systems /  |c editors, Kevin Feeney [and seven others] 
264 1 |a Aalborg :  |b River Publishers,  |c [2018] 
300 |a 1 online resource (436 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a River Publishers series in software engineering 
588 0 |a Online resource; title from PDF title page (viewed Feburary 4, 2019). 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Half Title Page; RIVER PUBLISHERS SERIES IN SOFTWARE ENGINEERING; Title Page; Copyright Page; Contents; Preface; Acknowledgements; List of Contributors; List of Figures; List of Tables; List of Abbreviations; Chapter 1 -- Introduction; 1.1 State of the Art in Engineering Data-Intensive Systems; 1.1.1 The Challenge; 1.2 State of the Art in Semantics-Driven Software Engineering; 1.2.1 The Challenge; 1.3 State of the Art in Data Quality Engineering; 1.3.1 The Challenge; 1.4 About ALIGNED; 1.5 ALIGNED Partners; 1.5.1 Trinity College Dublin 
505 8 |a 1.5.2 Oxford University -- Department of Computer Science1.5.3 Oxford University -- School of Anthropology and Museum Ethnography; 1.5.4 University of Leipzig -- Agile Knowledge Engineering and Semantic Web (AKSW); 1.5.5 Semantic Web Company; 1.5.6 Wolters Kluwer Germany; 1.5.7 Adam Mickiewicz University in Poznań; 1.5.8 Wolters Kluwer Poland; 1.6 Structure; Chapter 2 -- ALIGNED Use Cases -- Data and SoftwareEngineering Challenges; 2.1 Introduction; 2.2 The ALIGNED Use Cases; 2.2.1 Seshat: Global History Databank; 2.2.2 PoolParty Enterprise Application Demonstrator System; 2.2.3 DBpedia 
505 8 |a 2.2.4 Jurion and Jurion IPG2.2.5 Health Data Management; 2.3 The ALIGNED Use Cases and Data Life Cycle. Major Challenges and Offered Solutions; 2.4 The ALIGNED Use Cases and Software Life Cycle. Major Challenges and Offered Solutions; 2.5 Conclusions; Chapter 3 -- Methodology; 3.1 Introduction; 3.2 Software and Data Engineering Life Cycles; 3.2.1 Software Engineering Life Cycle; 3.2.2 Data Engineering Life Cycle; 3.3 Software Development Processes; 3.3.1 Model-Driven Approaches; 3.3.2 Formal Techniques; 3.3.3 Test-Driven Development; 3.4 Integration Points and Harmonisation 
505 8 |a 3.4.1 Integration Points3.4.2 Barriers to Harmonisation; 3.4.3 Methodology Requirements; 3.5 An ALIGNED Methodology; 3.5.1 A General Framework for Process Management; 3.5.2 An Iterative Methodology and Illustration; 3.6 Recommendations; 3.6.1 Sample Methodology; 3.7 Sample Synchronisation Point Activities; 3.7.1 Model Catalogue: Analysis and Search/Browse/Explore; 3.7.2 Model Catalogue: Design and Classify/Enrich; 3.7.3 Semantic Booster: Implementation and Store/Query; 3.7.4 Semantic Booster: Maintenance and Search/Browse/Explore; 3.8 Summary; 3.8.1 Related Work; 3.9 Conclusions 
505 8 |a Chapter 4 -- ALIGNED MetaModel Overview4.1 Generic Metamodel; 4.1.1 Basic Approach; 4.1.2 Namespaces and URIs; 4.1.3 Expressivity of Vocabularies; 4.1.4 Reference Style for External Terms; 4.1.5 Links with W3C PROV; 4.2 ALIGNED Generic Metamodel; 4.2.1 Design Intent Ontology (DIO); 4.3 Software Engineering; 4.3.1 Software Life Cycle Ontology; 4.3.2 Software Implementation Process Ontology (SIP); 4.4 Data Engineering; 4.4.1 Data Life Cycle Ontology; 4.5 DBpedia DataID (DataID); 4.6 Unified Quality Reports; 4.6.1 Reasoning Violation Ontology (RVO) Overview; 4.6.2 W3C SHACL Reporting Vocabulary 
520 |a To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design. Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems. 
545 0 |a Kevin Feeney, Jim Davies, James Welch 
590 |a Knovel  |b ACADEMIC - Software Engineering 
650 0 |a System design. 
650 0 |a Big data. 
650 0 |a Agile software development. 
650 6 |a Conception de systèmes. 
650 6 |a Données volumineuses. 
650 6 |a Méthodes agiles (Développement de logiciels) 
650 7 |a COMPUTERS  |x Computer Literacy.  |2 bisacsh 
650 7 |a COMPUTERS  |x Computer Science.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Hardware  |x General.  |2 bisacsh 
650 7 |a COMPUTERS  |x Information Technology.  |2 bisacsh 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a COMPUTERS  |x Reference.  |2 bisacsh 
650 7 |a COMPUTERS  |x Programming  |x Software Development.  |2 bisacsh 
650 7 |a COMPUTERS  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a Agile software development  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a System design  |2 fast 
655 0 |a Electronic books. 
700 1 |a Feeney, Kevin,  |e editor. 
776 0 8 |i Print version:  |a Feeney, Kevin.  |t Engineering Agile Big-Data Systems.  |d Aalborg : River Publishers, ©2018 
830 0 |a River Publishers series in software engineering. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpEABDS005/toc  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30251861 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35793299 
938 |a EBSCOhost  |b EBSC  |n 1941011 
938 |a YBP Library Services  |b YANK  |n 18207794 
938 |a YBP Library Services  |b YANK  |n 18105908 
938 |a YBP Library Services  |b YANK  |n 15855787 
994 |a 92  |b IZTAP