Cargando…

Motion-induced eddy current techniques for non-destructive testing and evaluation /

The book, consisting of 6 chapters, studies motion-induced eddy current techniques for non-destructive testing and evaluation by considering: forward simulation methods; sensors for MIECT; experiments and LET measurements; Lorentz force evaluation and non-destructive applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Brauer, Hartmut, 1953- (Autor)
Otros Autores: Ziolkowski, Marek (Editor ), Weise, Konstantin (Editor ), Carlstedt, Matthias (Editor ), Uhlig, Robert P. (Editor ), Zec, Mladen (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Stevenage : Institution of Engineering and Technology, 2018.
Colección:IET control, robotics and sensors series ; 06.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro; Contents; Author Biographies; Preface; 1: Introduction (Hartmut Brauer); 1.1 Electromagnetic testing; 1.1.1 Brief historical review; 1.1.2 Electromagnetic NDT methods; 1.1.3 Capabilities of electromagnetic techniques; 1.1.4 Present state of eddy current inspection; 1.2 Eddy current testing; 1.2.1 Eddy current and ECT; 1.2.2 ECT principles; 1.2.3 Applications; 1.3 Motion-induced ECT; 1.3.1 Introduction; 1.3.2 Lorentz force eddy current testing; 1.3.3 Theory; 1.3.4 Experiments; 1.3.5 Comparison of ECT and LET
  • 2: Forward simulation methods (Marek Ziolkowski, Mladen Zec and Konstantin Weise)2.1 Moving coordinate systems-transformations; 2.2 Semianalytical methods used in LET systems; 2.2.1 Calculation of forces in 2D LET systems; 2.2.2 Lorentz forces acting on 3D permanent magnets above moving conducting plate without defects; 2.2.3 Calculation of forces in 3D LET systems; 2.2.4 Oscillatory motion of permanent magnets above a conducting plate; 2.2.5 The simplest approach to calculate DRS; 2.2.6 A hole in a thin, large, conductive sheet; 2.2.7 An extended area approach in the calculation of DRS
  • 2.3 Surface charge simulation method2.4 Numerical simulations with FEM; 2.4.1 Introduction and motivation; 2.4.2 Computation of eddy current distributions including moving parts; 2.4.3 Numerical modeling of conductivity anomalies; 2.4.4 Comparison of numerical approaches; 3: Sensors for MIECT (Matthias Carlstedt, Hartmut Brauer and Konstantin Weise); 3.1 Force measurement systems; 3.1.1 Principles of force transducers; 3.1.2 Differential Lorentz force eddy current testing sensor; 3.1.3 Characteristics and calibration of force measurement systems; 3.2 Optimization of PM systems
  • 3.2.1 Introduction and motivation3.2.2 Methods; 3.2.3 Optimization results and discussion; 3.2.4 Prototypes of optimized LET magnet systems; 3.2.5 Defect depth study; 3.2.6 Conclusions; 4: Experiments and LET measurements (Matthias Carlstedt and Konstantin Weise); 4.1 Measurement procedure; 4.1.1 Measurement principle; 4.1.2 Measurement method; 4.1.3 Experimental setup; 4.2 Validation procedure; 4.2.1 DSP and basic statistics; 4.2.2 Autocorrelation on typical force signals; 4.2.3 Program flowchart for DSP; 4.2.4 Experimental study; 4.2.5 Uncertainty analysis
  • 5: Lorentz force evaluation (Hartmut Brauer)5.1 Identification of conductivity anomalies; 5.2 Inverse solution techniques; 5.2.1 Theory; 5.2.2 Classification of inverse problems; 5.2.3 Regularization; 5.3 Lorentz force evaluation; 5.4 Summary; 6: Applications (Robert P. Uhlig, Hartmut Brauer, Konstantin Weise and Marek Ziolkowski); 6.1 Sigmometry; 6.1.1 Introduction and motivation; 6.1.2 Basic principle; 6.1.3 Semianalytical and numerical calibration; 6.1.4 Experimental validation; 6.1.5 Findings; 6.2 Defectocscopy of multilayered structures; 6.2.1 LET measurements of alucobond specimen