Cargando…

Rotodynamic pumps : centrifugal and axial /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Srinivasan, K.M (Autor)
Autor Corporativo: ProQuest (Firm)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK New Academic Science, [2017]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 KNOVEL_on1058902988
003 OCoLC
005 20231027140348.0
006 m d
007 cr |n|||||||||
008 180822s2017 enka ob 001 0 eng d
040 |a AU@  |b eng  |e rda  |c AU@  |d OCLCO  |d OCLCF  |d KNOVL  |d VLB  |d YDX  |d OCLCO  |d OCLCQ  |d HNC  |d OCLCO 
066 |c (S 
019 |a 1136478427  |a 1192557454 
020 |a 9781781831724  |q (electronic bk.) 
020 |a 1781831726  |q (electronic bk.) 
020 |a 9781523118915  |q (electronic bk.) 
020 |a 1523118911  |q (electronic bk.) 
020 |z 9781781830178 
020 |z 1781830177 
029 1 |a AU@  |b 000065065578 
035 |a (OCoLC)1058902988  |z (OCoLC)1136478427  |z (OCoLC)1192557454 
050 4 |a TJ919  |b .S65 2017 
082 0 4 |a 621.6/7  |2 23 
049 |a UAMI 
100 1 |a Srinivasan, K.M.,  |e author. 
245 1 0 |a Rotodynamic pumps :  |b centrifugal and axial /  |c K M Srinivasan. 
250 |a Second edition. 
264 1 |a London, UK  |b New Academic Science,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (xvi, 573 pages.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record. 
590 |a Knovel  |b ACADEMIC - Mechanics & Mechanical Engineering 
650 0 |a Centrifugal pumps. 
650 0 |a Axial flow pumps. 
650 6 |a Pompes centrifuges. 
650 7 |a Axial flow pumps  |2 fast 
650 7 |a Centrifugal pumps  |2 fast 
710 2 |a ProQuest (Firm) 
776 0 8 |i Print version:  |z 9781781830178  |z 1781830177 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpRPCAE003/toc  |z Texto completo 
880 0 0 |6 505-00/(S  |g 1. Introduction.  |t 1.1 Principle and Classification of Pumps  |g 2. Pump Parameters.  |t 2.1 Basic Parameters of Pump --  |t 2.2 Pump Construction --  |t 2.3 Losses in Pumps and Efficiency --  |t 2.4 Suction Conditions --  |t 2.5 Similarity Laws in Pumps --  |t 2.6 Classification of Impeller Types According to Specific Speed (ns) --  |t 2.7 Pumping Liquids other than Water  |g 3. Theory of Rotodynamic Pumps.  |t 3.1 Energy Equation Using Moment of Momentum Equation for Fluid Flow through Impeller --  |t 3.2 Bernoulli's Equation for the Flow through Impeller --  |t 3.3 Absolute Flow of Ideal Fluid Past the Flow Passages of Pump --  |t 3.4 Relative Flow of Ideal Fluid Past Impeller Blades --  |t 3.5 Flow over an Airfoil --  |t 3.6 Two Dimensional Ideal Flow --  |t 3.7 Axisymmetric Flow and Circulation in Impeller --  |t 3.8 Real Fluid Flow after Impeller Blade Outlet Edge --  |t 3.9 Secondary Flow between --  |t 3.10 Flow of a Profile in a Cascade System - Theoretical FlowBlades --  |t 3.11 Fundamental Theory of Flow over Isolated Profile --  |t 3.12 Profile Construction as per N.E. Jowkovski and S.A. Chapligin --  |t 3.13 Development of Thin Plate by Conformal Transformation --  |t 3.14 Development of Profile with Thickness by Conformal Transformation --  |t 3.15 Chapligin's Profile of Finite Thickness at Outlet Edge of the Profile --  |t 3.16 Velocity Distribution in Space between Volute Casing and Impeller Shroud --  |t 3.17 Pressure Distribution in the Space between Stationary Casing and Moving Impeller Shroud of Fluid Machine  |g 4. Theory and Calculation of Blade Systems in Centrifugal Pump.  |t 4.1 Introduction --  |t 4.2 One Dimensional Theory --  |t 4.3 Velocity Triangles --  |t 4.4 Impeller Eye and Blade Inlet Edge Conditions --  |t 4.5 Outlet Velocity Triangle: Effect due to Blade Thickness --  |t 4.6 Slip Factor as per Stodola and Meizel --  |t 4.7 Coefficient of Reaction (ρ) --  |t 4.8 Selection of Outlet Blade Angle (β2) and its Effect --  |t 4.9 Effect of Number of Vanes --  |t 4.10 Selection of Eye Diameter (D0), Eye Velocity (C0), Inlet Diameter of Impeller (D1) and Inlet Meridional Velocity (Cm1) --  |t 4.11 Selection of Outlet Diameter of Impeller (D2) --  |t 4.12 Effect of Blade Breadth (B2) --  |t 4.13 Impeller Design --  |t 4.14 Determination of Shaft and Hub Diameters --  |t 4.15 Determination of Inlet Dimensions for Impeller --  |t 4.16 Determination of Outlet Dimensions of Impeller --  |t 4.17 Development of Flow Passage in Meridional Plane --  |t 4.18 Development of Single Curvature Blade - Radial Blades --  |t 4.19 Development of Double Curvature Blade System  |g 5. Spiral Casings (Volute Casings).  |t 5.1 Importance of Spiral Casings --  |t 5.2 Volute Casing at the Outlet of the Impeller --  |t 5.3 Method of Calculation for Spiral Casing --  |t 5.4 Design of Spiral Casing with Cur = Constant and Trapezoidal Cross-Section --  |t 5.5 Calculation of Trapezoidal Volute Cross-Section under Constant Velocity of Flow Cv = Constant (Constant Velocity Design) --  |t 5.6 Calculation of Circular Volute Section with Cur = Constant --  |t 5.7 Design of Circular Volute Cross-Section with Constant Velocity (Cv) --  |t 5.8 Calculation of Diffuser Section of Volute Casing --  |t 5.9 (A) Diffuser --  |t 5.9 (B) Calculation of Spiral Part of Diffuser Passage --  |t View Section,5.9 (C) Calculation of Diverging Cone Part of the Diffuser --  |t 5.9 (D) Return Guide Vanes --  |t 5.10 Calculation of Vaned Diffuser --  |t 5.11 Vaned Return Guide Passage with Vaneless Diffuser --  |t 5.12 Suction Volute Casing --  |t 5.13 Design Procedure --  |t 5.14 Effects of Suction Spiral on Pump Performance --  |t 5.15 Effect due to Volute  |g 6. Losses in Pumps.  |t 6.1 Introduction --  |t 6.2 (A) Mechanical Losses --  |t 6.2 (B) Losses due to Disc Friction (ΔNd) --  |t 6.2 (C) Losses in Stuffing Box (ΔNs) --  |t View Section,6.2 (D) Bearing Losses (ΔNB) --  |t 6.3 (A) Leakage Flow through the Clearance between Stationary and Rotatory Wearing Rings --  |t 6.3 (B) Leakage Flow through the Clearance between Two Stages of a Multistage Pump --  |t 6.4 Hydraulic Losses  |g 7. Axial and Radial Thrusts.  |t 7.1 Introduction --  |t 7.2 Axial Force Acting on the Impeller --  |t 7.3 Axial Thrust in Semi-Open Impellers --  |t 7.4 Axial Thrust due to Direction Change in Bend at Inlet --  |t 7.5 Balancing of Axial Thrust --  |t 7.6 Axial Thrust Taken by Bearings --  |t 7.7 Radial Vanes at Rear Shroud of the Impeller --  |t 7.8 Axial Thrust Balancing by Balancing Holes --  |t 7.9 Axial Thrust Balancing by Balance Drum and Disc --  |t 7.10 Radial Forces Acting on Volute Casing --  |t 7.11 Determination of Radial Forces --  |t 7.12 Methods to Balance the Radial Thrust  |g 8. Model Analysis.  |t 8.1 Introduction --  |t 8.2 Similarity of Hydraulic Efficiency --  |t 8.3 Similarity of Volumetric Efficiency --  |t 8.4 Similarity of Mechanical Efficiency --  |t 8.5 Construction of Impeller by Similarity --  |t 8.6 Development of Surface of Impeller as per the Vortex Theory of G.F. Proscura  |g 9. Cavitation in Pumps.  |t 9.1 Suction Lift and Net Positive Suction Head (NPSH) --  |t 9.2 Cavitation Coefficient (σ) Thoma's Constant --  |t 9.3 Cavitation Specific Speed (C) --  |t 9.4 Cavitation Development --  |t 9.5 Cavitation Test on Pumps --  |t 9.6 Methods Adopted to Reduce Cavitation  |g 10. Axial Flow Pump.  |t 10.1 Operating Principles and Construction --  |t 10.2 Flow Characteristics of Axial Flow Pump --  |t 10.3 Kutta-Jowkovski Theorem --  |t 10.4 Real Fluid Flow over a Blade --  |t 10.5 Interaction between Profiles in a Cascade System --  |t 10.6 Curved Plates in a Cascade System --  |t 10.7 Effect of Blade Thickness on Flow over a Cascade System --  |t 10.8 Method of Calculation of Profile with Thickness in a Cascade System --  |t 10.9 (A) Pump Design by Direct Method (Jowkovski's Method, Lift Method) --  |t 10.9 (B) Design of Axial Flow Pump as per Jowkovski's Lift Method - Another Method --  |t 10.10 Flow with Angle of Attack --  |t 10.11 Correction in Profile Curvature due to the Change from Thin to Thick Profile --  |t 10.12 Effect of Viscosity --  |t 10.13 Selection of Impeller Diameter and Speed --  |t 10.14 Selection of Hub Ratio --  |t 10.15 Selection of (l/t)peri - Aspect Ratio at Periphery --  |t 10.16 Calculation of Hydraulic Losses and Hydraulic Efficiency --  |t 10.17 Calculation of Profile Losses Using Boundary Layer Thickness δ*** --  |t 10.18 Cavitation in Axial Flow Pumps --  |t 10.19 Radial Clearance between Impeller and Impeller Casing --  |t 10.20 Calculation for Axial Flow Diffusers --  |t 10.21 Axial Thrust  |g 11. Testing, Performance Evaluation and Regulation of Pumps.  |t 11.1 Introduction --  |t 11.2 Pump Performance - Relation between Total Head and Quantity of Flow --  |t 11.3 Pump Testing --  |t 11.4 Systems and Arrangements --  |t 11.5 Combined Operation of Pumps and Systems --  |t 11.6 Stable and Unstable Operations in a System --  |t 11.7 Reverse Flow in Pump --  |t 11.8 Pump Regulation --  |t 11.9 Effect of the Pump Performance When Small Changes are Made in Pump Parts  |g 12. Pump Construction and Application.  |t 12.1 Classification --  |t 12.2 Pumps for Clear Cold Water and for Non Corrosive Liquids --  |t 12.3 Other Pumps --  |t 12.4 Axial Flow Pumps --  |t 12.5 Condensate Pumps --  |t 12.6 Feed Water Pumps --  |t 12.7 Circulating Pumps --  |t 12.8 Booster Pumps --  |t 12.9 Pump for Viscous and Abrasive Liquids --  |t 12.10 Light Weight High Speed Engine Driven Monoblock Pump --  |t 12.11 Shaftless Monoblock Centrifugal Pump  |g 13. Design of Pump Components.  |t Design No. D1.A Design of Single Stage Centrifugal Pump --  |t Design No. D1.B Design of a Multistage Centrifugal Pump --  |t Design No. D2 Spiral Casing Design --  |t Design No. D3 --  |t Design No. D4 --  |t Design No. D5 --  |t Design No. D6 --  |t Design No. D7 --  |t Design No. D8  |g Appendices.  |t Appendix I: Equations Relating Cy, Ymax/ι, δ° for Different Profiles --  |t Appendix II: ISI Standards --  |t Appendix III: Units of Measurements - Conversion Factors 
938 |a YBP Library Services  |b YANK  |n 15652544 
994 |a 92  |b IZTAP