Opto-structural analysis /
This book presents basic structural deformation and stress analysis as applied to optical systems. It provides the tools for first-order analyses required in the design concept phase before handling the intricate details of a full-up design. While finite element analysis is paramount to a successful...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bellingham, Washington (1000 20th St. Bellingham WA 98225-6705 USA) :
SPIE,
2018.
|
Colección: | SPIE Press monograph ;
PM288. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Acknowledgments
- A note on units
- 1. Stress and strain: 1.1. Introduction; 1.2. Hooke's Law; 1.3. Beyond tension, compression, and shear; 1.4. Combining stresses; 1.5. Examples for consideration; 1.6. Thermal strain and stress; 1.7. Buckling; References
- 2. Material properties: 2.1. Properties and definitions; 2.2. Low-thermal-expansion materials; 2.3. Not-so-low-thermal-expansion materials; 2.4. Very high-thermal-expansion materials; References
- 3. Kinematic mounts: 3.1. Kinematics; 3.2. Quasi-static kinematic mount; 3.3. Flexure analysis; 3.4. Bipod; 3.5. Timmy curves; 3.6. A better bipod; 3.7. An alternative bipod; 3.8. Stroke algorithm; References
- 4. Solid optics: performance analysis: 4.1. Wavefront error and performance prediction; 4.2. Mount-induced error; 4.3. Gravity error; 4.4. Temperature soak; 4.5. Thermal gradient; 4.6. Coating and cladding; 4.7. Rule of mixtures; 4.8. Trimetallic strip; 4.9. Random variations in the coefficient of thermal expansion; References
- 5. Lightweight optics: optimization: 5.1. Lightweight optics; 5.2. Core shape; 5.3. Core stiffness; 5.4. Partially closed-back optics; 5.5. Polish; 5.6. Weight optimization; 5.7. Stiffness criteria; 5.8. Stiffness optimization; 5.9. The great debate; References
- 6. Lightweight optics: performance error: 6.1. Mount-induced error; 6.2. Gravity; 6.3. Gradients; 6.4. Coating and cladding; 6.5. Random variations in the coefficient of thermal expansion; 6.6. All shapes and sizes
- 7. Large optics: 7.1. Multipoint mounts; 7.2. Zonal mount; 7.3. Hindle mount; 7.4. Active mount; 7.5. Large-aspect-ratio optics; 7.6. Performance comparisons; 7.7. How low can you go? 7.8. Extremely large-aspect-ratio optics; 7.9. Summary; References
- 8. Figures of merit: 8.1. Mechanical figures of merit; 8.2. Thermal figure of merit; 8.3. Combined figures of merit; 8.4. True mechanical figures of merit; 8.5. Strength-to-weight ratio; 8.6. Graphical summary; 8.7. Lightweight optics; 8.8. Examples; References
- 9. Adhesives: 9.1. Mechanical properties; 9.2. Load stress distribution; 9.3. Glass-liquid transition; 9.4. Temperature creep; 9.5. Lap shear strength; 9.6. Thermal stress; 9.7. Modeling techniques; 9.8. Fillets; 9.9. Soft elastomers; References
- 10. Simple dynamics: 10.1. Basics; 10.2. A useful relationship; 10.3. Random vibration; 10.4. Force limits; 10.5. Shipping vibration; 10.6. Acceleration shock; References
- 11. Fatigue: 11.1. Cyclic fatigue; 11.2. S-N method; 11.3. Nonzero mean stress; 11.4. Fracture mechanics method; 11.5. Random vibration fatigue; References
- 12. Brittle materials: 12.1. Theoretical strength; 12.2. Failure modes; 12.3. Strength theory; 12.4. Strength with residual stress; 12.5. Stress corrosion; 12.6. Stress corrosion free of residual stress; 12.7. Stress corrosion with residual stress; 12.8. Dynamic fatigue; 12.9. An approximation technique; 12.10. Overload proof test; References
- 13. Performance analysis of optical structures: 13.1. Supporting optics; 13.2. Metering despace; 13.3. Decentration and tip; 13.4. Structure forms; 13.5. Metering truss design; 13.6. Case study: Teal ruby telescope; 13.7. Support structure; References
- 14. Nuts and bolts: 14.1. Terminology; 14.2. Bolt material; 14.3. Bolt stress; 14.4. Stress examples; 14.5. Bolt load; 14.6. Thermal load; 14.7. Washers; 14.8. Friction slip and pins; 14.9. Combined bolt loads; References
- 15. Linear analysis of nonlinear properties: 15.1. Linear theory; 15.2. Nonlinear systems: secant and tangent properties; 15.3. Nonlinear modulus; 15.4. Nonlinear thermal stress; 15.5. Special theory; 15.6. General theory; 15.7. Using secants; 15.8. Sample problems
- 16. Miscellaneous analysis: 16.1. Venting; 16.2. Stress birefringence; 16.3 Bonded tubes and grooves; 16.4. Bonded flexures; 16.5. Contact stress; 16.6. Friction; 16.7. Large displacements; 16.8. Windows; 16.9. Dimensional instability; References
- Epilogue
- Index.