Cargando…

Design optimization of fluid machinery : applying computational fluid dynamics and numerical optimization /

Design Optimization of Fluid Machinery: Applying Computational Fluid Dynamics and Numerical Optimization Drawing on extensive research and experience, this timely reference brings together numerical optimization methods for fluid machinery and its key industrial applications. It logically lays out t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kim, Kwang-Yong, 1956- (Autor), Samad, Abdus (Autor), Benini, Ernesto (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1054265865
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 180924t20192019nju ob 001 0 eng
010 |a  2018045697 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d OCLCF  |d N$T  |d EBLCP  |d RECBK  |d DG1  |d YDX  |d AU@  |d YDX  |d UKMGB  |d UKAHL  |d OCLCQ  |d UX1  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB9C0130  |2 bnb 
016 7 |a 019216617  |2 Uk 
019 |a 1083134953  |a 1100443447  |a 1124547907 
020 |a 9781119188322  |q (electronic book) 
020 |a 1119188326  |q (electronic book) 
020 |a 9781119188377  |q (electronic book) 
020 |a 1119188377  |q (electronic book) 
020 |a 9781119188308  |q (electronic book) 
020 |a 111918830X  |q (electronic book) 
020 |z 9781119188292  |q (hardcover) 
029 1 |a UKMGB  |b 019216617 
029 1 |a AU@  |b 000067151829 
035 |a (OCoLC)1054265865  |z (OCoLC)1083134953  |z (OCoLC)1100443447  |z (OCoLC)1124547907 
037 |a 9781119188308  |b Wiley 
042 |a pcc 
050 1 4 |a TA357.5.D37  |b K56 2019 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 0 |a 620.1/064  |2 23 
049 |a UAMI 
100 1 |a Kim, Kwang-Yong,  |d 1956-  |e author. 
245 1 0 |a Design optimization of fluid machinery :  |b applying computational fluid dynamics and numerical optimization /  |c Kwang-Yong Kim, Abdus Samad, Ernesto Benini. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; Chapter 1 Introduction; 1.1 Introduction; 1.2 Fluid Machinery: Classification and Characteristics; 1.3 Analysis of Fluid Machinery; 1.4 Design of Fluid Machinery; 1.4.1 Design Requirements; 1.4.2 Determination of Meanline Parameters; 1.4.3 Meanline Analysis; 1.4.4 3D Blade Design; 1.4.5 Quasi 3D Through-Flow Analysis; 1.4.6 Full 3D Flow Analysis; 1.4.7 Design Optimization; 1.5 Design Optimization of Turbomachinery; References; Chapter 2 Fluid Mechanics and Computational Fluid Dynamics; 2.1 Basic Fluid Mechanics; 2.1.1 Introduction 
505 8 |a 2.1.2 Classification of Fluid Flow2.1.2.1 Based on Viscosity; 2.1.2.2 Based on Compressibility; 2.1.2.3 Based on Flow Speed (Mach Number); 2.1.2.4 Based on Flow Regime; 2.1.2.5 Based on Number of Phases; 2.1.3 One-, Two-, and Three-Dimensional Flows; 2.1.3.1 One-Dimensional Flow; 2.1.3.2 Two- and Three-Dimensional Flow; 2.1.4 External Fluid Flow; 2.1.5 The Boundary Layer; 2.1.5.1 Transition from Laminar to Turbulent Flow; 2.2 Computational Fluid Dynamics (CFD); 2.2.1 CFD and its Application in Turbomachinery; 2.2.1.1 Advantages of Using CFD; 2.2.1.2 Limitations of CFD in Turbomachinery 
505 8 |a 2.2.2 Basic Steps Involved in CFD Analysis2.2.2.1 Problem Statement; 2.2.2.2 Mathematical Model; 2.2.3 Governing Equations; 2.2.3.1 Mass Conservation; 2.2.3.2 Momentum Conservation; 2.2.3.3 Energy Conservation; 2.2.4 Turbulence Modeling; 2.2.4.1 What is Turbulence?; 2.2.4.2 Need for Turbulence Modeling; 2.2.4.3 Reynolds-Averaged Navier-Stokes Equations; 2.2.4.4 Turbulence Closure Models; 2.2.4.5 Large Eddy Simulation (LES); 2.2.4.6 Direct Numerical Simulation (DNS); 2.2.5 Boundary Conditions; 2.2.5.1 Inlet/Outlet Boundary Conditions; 2.2.5.2 Wall Boundary Conditions 
505 8 |a 2.2.5.3 Periodic/Cyclic Boundary Conditions2.2.5.4 Symmetry Boundary Conditions; 2.2.6 Moving Reference Frame (MRF); 2.2.7 Verification and Validation; 2.2.8 Commercial CFD Software; 2.2.9 Open Source Codes; 2.2.9.1 OpenFOAM; References; Chapter 3 Optimization Methodology; 3.1 Introduction; 3.1.1 Engineering Optimization Definition; 3.1.2 Design Space; 3.1.3 Design Variables and Objectives; 3.1.4 Optimization Procedure; 3.1.5 Search Algorithm; 3.2 Multi-Objective Optimization (MOO); 3.2.1 Weighted Sum Approach; 3.2.2 Pareto-Optimal Front 
505 8 |a 3.3 Constrained, Unconstrained, and Discrete Optimization3.3.1 Constrained Optimization; 3.3.2 Unconstrained Optimization; 3.3.3 Discrete Optimization; 3.4 Surrogate Modeling; 3.4.1 Overview; 3.4.2 Optimization Procedure; 3.4.3 Surrogate Modeling Approach; 3.4.3.1 Response Surface Approximation (RSA) Model; 3.4.3.2 Artificial Neural Network (ANN) Model; 3.4.3.3 Kriging Model (KRG) Model; 3.4.3.4 PRESS-Based-Averaging (PBA) Model; 3.4.3.5 Simple Average (SA) Model; 3.5 Error Estimation; 3.5.1 General Errors When Simulating and Optimizing a Turbomachinery System 
520 |a Design Optimization of Fluid Machinery: Applying Computational Fluid Dynamics and Numerical Optimization Drawing on extensive research and experience, this timely reference brings together numerical optimization methods for fluid machinery and its key industrial applications. It logically lays out the context required to understand computational fluid dynamics by introducing the basics of fluid mechanics, fluid machines and their components. Readers are then introduced to single and multi-objective optimization methods, automated optimization, surrogate models, and evolutionary algorithms. Finally, design approaches and applications in the areas of pumps, turbines, compressors, and other fluid machinery systems are clearly explained, with special emphasis on renewable energy systems.-Written by an international team of leading experts in the field -Brings together optimization methods using computational fluid dynamics for fluid machinery in one handy reference -Features industrially important applications, with key sections on renewable energy systems Design Optimization of Fluid Machinery is an essential guide for graduate students, researchers, engineers working in fluid machinery and its optimization methods. It is a comprehensive reference text for advanced students in mechanical engineering and related fields of fluid dynamics and aerospace engineering. 
588 0 |a Online resource; title from digital title page (viewed on July 01, 2019). 
590 |a Knovel  |b ACADEMIC - Mechanics & Mechanical Engineering 
650 0 |a Computational fluid dynamics. 
650 6 |a Dynamique des fluides numérique. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Computational fluid dynamics  |2 fast 
700 1 |a Samad, Abdus,  |e author. 
700 1 |a Benini, Ernesto,  |e author. 
776 0 8 |i Print version:  |a Kim, Kwang-Yong, 1956-  |t Design optimization of fluid machinery.  |d Hoboken, NJ : Wiley, 2019  |z 9781119188292  |w (DLC) 2018044844 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpDOFMACF1/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35190687 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5633138 
938 |a EBSCOhost  |b EBSC  |n 2002073 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00752025 
938 |a YBP Library Services  |b YANK  |n 15990257 
994 |a 92  |b IZTAP