Cargando…

Signal processing and machine learning for brain-machine interfaces /

Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Tanaka, Toshihisa (Engineer) (Editor ), Arvaneh, Mahnaz (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Stevenage, United Kingdom : Institution of Engineering and Technology, 2018.
Colección:IET control, robotics and sensors series ; 114.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1054199219
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cn|||||||||
008 180925s2018 enka ob 001 0 eng d
040 |a LGG  |b eng  |e rda  |e pn  |c LGG  |d LGG  |d UIU  |d STF  |d OCLCO  |d CDN  |d OCLCF  |d YDX  |d EBLCP  |d MERUC  |d N$T  |d RB#  |d UAB  |d UMR  |d KNOVL  |d CEF  |d MERER  |d CUV  |d OCLCO  |d OCLCQ  |d VLB  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d UX1  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781785613999  |q (electronic bk.) 
020 |a 1785613995  |q (electronic bk.) 
020 |a 9781523119837  |q (electronic bk.) 
020 |a 1523119837  |q (electronic bk.) 
020 |z 9781785613982 
020 |z 1785613987 
035 |a (OCoLC)1054199219 
050 4 |a QP360.7  |b .S54 2018eb 
060 4 |a WL 26.5  |b S578 2018 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31 
049 |a UAMI 
245 0 0 |a Signal processing and machine learning for brain-machine interfaces /  |c edited by Toshihisa Tanaka and Mahnaz Arvaneh. 
264 1 |a Stevenage, United Kingdom :  |b Institution of Engineering and Technology,  |c 2018. 
264 4 |c ©2018 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IET Control, Robotics and Sensors series ;  |v 114 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
520 |a Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions. In this book an international panel of experts introduce signal processing and machine learning techniques for BMI/BCI and outline their practical and future applications in neuroscience, medicine, and rehabilitation, with a focus on EEG-based BMI/BCI methods and technologies. Topics covered include discriminative learning of connectivity pattern of EEG; feature extraction from EEG recordings; EEG signal processing; transfer learning algorithms in BCI; convolutional neural networks for event-related potential detection; spatial filtering techniques for improving individual template-based SSVEP detection; feature extraction and classification algorithms for image RSVP based BCI; decoding music perception and imagination using deep learning techniques; neurofeedback games using EEG-based Brain-Computer Interface Technology; affective computing system and more. 
505 0 |a Intro; Contents; Preface; 1. Brain-computer interfaces and electroencephalogram: basics and practical issues / Mahnaz Arvaneh and Toshihisa Tanaka; Abstract; 1.1 Introduction; 1.2 Core components of a BMI system; 1.3 Signal acquisition; 1.3.1 Electroencephalography; 1.3.2 Positron emission tomography; 1.3.3 Magnetoencephalography; 1.3.4 Functional magnetic resonance imaging; 1.3.5 Near-infrared spectroscopy; 1.3.6 Commonly used method in BMI-why EEG?; 1.4 Measurement of EEG; 1.4.1 Principle of EEG; 1.4.2 How to measure EEG; 1.4.3 Practical issues 
505 8 |a 1.5 Neurophysiological signals in EEG for driving BMIs1.5.1 Evoked potentials; 1.5.2 Spontaneous signals; 1.6 Commonly used EEG processing methods in BMI; 1.6.1 Preprocessing; 1.6.2 Re-referencing; 1.6.3 Feature extraction; 1.6.4 Classification; 1.7 Feedback; 1.8 BMI applications; 1.9 Summary; References; 2. Discriminative learning of connectivity pattern of motor imagery EEG / Xinyang Li, Cuntai Guan, and Huijuan Yang; Abstract; 2.1 Introduction; 2.2 Discriminative learning of connectivity pattern of motor imagery EEG; 2.2.1 Spatial filter design for variance feature extraction 
505 8 |a 2.2.2 Discriminative learning of connectivity pattern2.3 Experimental study; 2.3.1 Experimental setup and data processing; 2.3.2 Correlation results; 2.3.3 Classification results; 2.4 Relations with existing methods; 2.5 Conclusion; References; 3. An experimental study to compare CSP and TSM techniques to extract features during motor imagery tasks / Matteo Sartori, Simone Fiori, and Toshihisa Tanaka; Abstract; 3.1 Introduction; 3.2 Theoretical concepts and methods; 3.2.1 Averaging techniques of SCMs; 3.2.2 SCM averages in CSP and TSM methods; 3.2.3 Multidimensional scaling (MDS) algorithm 
505 8 |a 3.3 Experimental results3.3.1 Classification accuracy; 3.3.2 SCMs distributions on tangent spaces; 3.4 Conclusions; References; 4. Robust EEG signal processing with signal structures / Hiroshi Higashi and Toshihisa Tanaka; Abstract; 4.1 Introduction; 4.2 Source analysis; 4.3 Regularization; 4.4 Filtering in graph spectral domain; 4.4.1 Graph Fourier transform; 4.4.2 Smoothing and dimensionality reduction by GFT; 4.4.3 Tangent space mapping from Riemannian manifold; 4.4.4 Smoothing on functional brain structures; 4.5 Conclusion; References 
505 8 |a 5. A review on transfer learning approaches in brain-computer interface / Ahmed M. Azab, Jake Toth, Lyudmila S. Mihaylova, and Mahnaz ArvanehAbstract; 5.1 Introduction; 5.2 Transfer learning; 5.2.1 History of transfer learning; 5.2.2 Transfer learning definition; 5.2.3 Transfer learning categories; 5.3 Transfer learning approaches; 5.3.1 Instance-based transfer learning; 5.3.2 Feature-representation transfer learning; 5.3.3 Classifier-based transfer learning; 5.3.4 Relational-based transfer learning; 5.4 Transfer learning methods used in BCI; 5.4.1 Instance-based transfer learning in BCI 
590 |a Knovel  |b ACADEMIC - Optics & Photonics 
590 |a Knovel  |b ACADEMIC - General Engineering & Project Administration 
650 0 |a Brain-computer interfaces. 
650 0 |a Decoders (Electronics) 
650 0 |a Electroencephalography. 
650 0 |a Medical technology. 
650 0 |a Signal processing. 
650 2 |a Electroencephalography 
650 2 |a Medical Laboratory Science 
650 6 |a Interfaces cerveau-ordinateur. 
650 6 |a Décodeurs (Électronique) 
650 6 |a Électroencéphalographie. 
650 6 |a Technologie médicale. 
650 6 |a Traitement du signal. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Brain-computer interfaces  |2 fast 
650 7 |a Decoders (Electronics)  |2 fast 
650 7 |a Electroencephalography  |2 fast 
650 7 |a Medical technology  |2 fast 
650 7 |a Signal processing  |2 fast 
650 7 |a brain-computer interfaces.  |2 inspect 
650 7 |a decoding.  |2 inspect 
650 7 |a electroencephalography.  |2 inspect 
650 7 |a medical signal processing.  |2 inspect 
650 7 |a neural net architecture.  |2 inspect 
650 7 |a spatial filters.  |2 inspect 
650 7 |a unsupervised learning.  |2 inspect 
700 1 |a Tanaka, Toshihisa  |c (Engineer),  |e editor. 
700 1 |a Arvaneh, Mahnaz,  |e editor. 
776 0 8 |i Print version:  |t Signal processing and machine learning for brain-machine interfaces.  |d London, United Kingdom : Institution of Engineering and Technology, 2018  |z 1785613987  |w (DLC) 2018400763  |w (OCoLC)1030592734 
830 0 |a IET control, robotics and sensors series ;  |v 114. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpSPMLBMI2/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34224866 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5598348 
938 |a EBSCOhost  |b EBSC  |n 1925309 
938 |a YBP Library Services  |b YANK  |n 15836537 
994 |a 92  |b IZTAP