|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_on1054186549 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
180925s2019 enk ob 001 0 eng d |
040 |
|
|
|a UKRSC
|b eng
|e rda
|e pn
|c UKRSC
|d UIU
|d N$T
|d YDX
|d OCLCF
|d LVT
|d MERER
|d OCLCQ
|d KNOVL
|d K6U
|d UX1
|d OCLCQ
|d SDF
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCO
|d OCLCQ
|
015 |
|
|
|a GBB818225
|2 bnb
|
016 |
7 |
|
|a 018693701
|2 Uk
|
019 |
|
|
|a 1152039021
|
020 |
|
|
|a 9781788010313
|q (electronic bk.)
|
020 |
|
|
|a 1788010310
|q (electronic bk.)
|
020 |
|
|
|a 9781523122943
|q (electronic bk.)
|
020 |
|
|
|a 1523122943
|q (electronic bk.)
|
020 |
|
|
|a 1782625550
|
020 |
|
|
|a 9781782625551
|
020 |
|
|
|z 9781782625551
|q (print)
|
035 |
|
|
|a (OCoLC)1054186549
|z (OCoLC)1152039021
|
037 |
|
|
|a 4757:4609
|b Royal Society of Chemistry
|n http://www.rsc.org/spr
|
050 |
|
4 |
|a TJ810
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.47
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Integrated solar fuel generators /
|c editors: Ian D. Sharp, Harry A. Atwater, Hans-Joachim Lewerenz.
|
264 |
|
1 |
|a Cambridge :
|b Royal Society of Chemistry,
|c [2019]
|
300 |
|
|
|a 1 online resource (544 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Energy and environment series ;
|v 22
|
500 |
|
|
|a Includes index.
|
500 |
|
|
|a Title from title details screen.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Cover -- Preface -- Contents -- Introduction and System Considerations -- Chapter 1: Concepts of Photoelectrochemical Energy Conversion and Fuel Generation -- 1.1 Introductory Remarks -- 1.2 Semiconductor Junctions and Dark Electrochemical Processes -- 1.2.1 Concept of the Classical Silicon Solar Cell -- 1.2.2 The Semiconductor-redox Electrolyte Contact -- 1.2.3 Dark Currents at the Semiconductor-electrolyte Boundary -- 1.2.3 Dark Currents at the Semiconductor-electrolyte Boundary -- 1.2.4 The Role of Surface States at the Electrolyte Boundary -- 1.3 Semiconductor Junctions for Solar Energy Conversion -- 1.3.1 Overview of Junction Types -- 1.3.2 Junctions for Photoelectrochemical Energy Conversion -- 1.4 Photocurrent Generation at Illuminated Semiconductor Junctions -- 1.4.1 Photon Absorption -- 1.4.2 Illuminated Rectifying Junctions -- 1.5 Photoelectrochemical Water Splitting -- 1.6 Tandem Junction Water Splitting Cells -- 1.7 New and Emerging Materials for Photoelectrochemical Energy Conversion -- 1.8 Concluding Remarks -- References -- Chapter 2: Photo-electrochemical Hydrogen Plants at Scale: A Life-cycle Net Energy Assessment -- 2.1 Introduction -- 2.2 Methods -- 2.2.1 Modeling Approach -- 2.2.2 Uncertainty -- 2.2.3 Externally-supplied versus On-site Electricity -- 2.2.4 PEC Cell and Module Design -- 2.2.4.1 Active Cell Materials Energy -- 2.2.4.2 Active Cell Fabrication Energy -- 2.2.4.3 Inactive Component Materials Energy -- 2.2.4.4 Inactive Component Fabrication Energy -- 2.2.5 Balance of System (panel-, field- and facility-level) Design -- 2.3 Results -- 2.3.1 Re-use of Materials -- 2.3.2 Solar Concentration -- 2.3.3 Scale-up Analysis -- 2.4 Conclusions -- Acknowledgments -- References -- Electrocatalysis.
|
505 |
8 |
|
|a Chapter 3: Understanding the Effects of Composition and Structure on the Oxygen Evolution Reaction (OER) Occurring on NiFeOx Catalysts -- 3.1 Introduction -- 3.2 Thermodynamics of Water Splitting -- 3.3 Catalysts for the OER -- 3.4 The Structure of FeNiOx -- 3.5 Identity of the Active Site in FeNiOx -- 3.6 Factors Affecting the OER Activity of NiFeOOH -- 3.7 Effects of Additives Other Than Fe on the OER Activity of NiMOx -- 3.8 Effects of Additive on the OER Activity of NiFeOx -- 3.9 Conclusions -- Acknowledgments -- References -- Chapter 4: Surface Science, X-ray and Electron Spectroscopy Studies of Electrocatalysis -- 4.1 Introduction -- 4.2 Laboratory Based Methods for Surface Characterization -- 4.2.1 UHV-based Surface Science -- 4.3 Synchrotron-based in situ and operando Spectroscopy -- 4.3.1 Photon-in/photon-out Methods: Experimental Setup for operando Spectroscopy, X-ray Absorption, and High Resolution X-ray Spectroscopy -- 4.3.1.1 Experimental Setup for operando Photon-in/photon-out Spectroscopy -- 4.3.1.2 X-ray Absorption Spectroscopy -- 4.3.1.3 High Resolution X-ray Spectroscopy -- 4.3.1.4 Feasibility of High-energy XAS as operando Surface Analysis Tool -- 4.3.2 Ambient Pressure XPS -- 4.3.2.1 Methods: Tender X-ray APXPS -- 4.4 Summary and Outlook -- References -- Chapter 5: Evaluating Electrocatalysts for Solar Water-splitting Reactions -- 5.1 Introduction -- 5.2 Experimental Considerations -- 5.2.1 Cell Design -- 5.2.2 Auxiliary Electrode -- 5.2.3 Reference Electrodes -- 5.2.4 Working Electrode Material -- 5.2.5 Catalyst Deposition and Characterization -- 5.3 Catalyst Performance -- 5.3.1 Elemental Analysis -- 5.3.2 Catalytic Activity -- 5.3.3 Short-term Stability -- 5.3.4 Extended Stability -- 5.3.5 Faradaic Efficiency Measurements -- 5.3.6 Measuring Catalyst Surface Area -- 5.4 Benchmarking Catalyst Performance.
|
505 |
8 |
|
|a 5.4.1 Primary Figure of Merit -- 5.4.2 Comparing Electrocatalytic Performance -- 5.5 Conclusions -- References -- Semiconductor Light Absorbers -- Chapter 6: Heterojunction Approaches for Stable and Efficient Photoelectrodes -- 6.1 Introduction -- 6.2 Semiconductor-Electrolyte Interface in the Context of Chemical Conversion -- 6.2.1 Overview -- 6.2.2 Simple Picture of an Unpinned Semiconductor-Liquid Junction (SLJ) -- 6.2.3 Electrically Decoupled Photovoltaic and Catalyst -- 6.2.4 Heterojunction Design for Stability and Efficiency -- 6.3 JCAP Experimental Work -- 6.3.1 Photocathodes -- 6.3.2 Photoanodes -- 6.4 Summary and Outlook -- Acknowledgments -- References -- Chapter 7: Artificial Photosynthesis with Inorganic Particles -- 7.1 Why Particles? -- 7.1.1 Photoreactors -- 7.2 Absorber Configurations -- 7.3 Stability -- 7.4 Ideal Limiting Solar-to-hydrogen (STH) Efficiency -- 7.5 Experimental Efficiencies -- 7.6 Mechanism of Water Splitting Photocatalysis -- 7.7 Free Energy of Photocatalysts -- 7.8 Light Absorption and Exciton Generation -- 7.9 Recombination -- 7.9.1 Auger Recombination -- 7.9.2 Shockley-Read-Hall Recombination -- 7.9.3 Surface Recombination -- 7.9.4 Radiative Recombination -- 7.9.5 Overall Lifetime -- 7.10 Charge Transport -- 7.11 Charge Separation -- 7.11.1 Junctions -- 7.11.2 Electric Dipoles -- 7.11.3 Ohmic Contacts -- 7.12 Charge Transfer Reactions at the Cocatalyst-Liquid Interface -- 7.13 Charge Transfer Reactions at Semiconductor-Liquid Interfaces -- 7.13.1 Controlling the Back Reaction -- 7.13.2 Photocorrosion -- 7.13.3 Electrolyte Effects and pH -- 7.13.4 Theoretical Modeling -- 7.13.5 Promising Absorber Materials -- 7.14 Conclusion -- Acknowledgments -- References -- Chapter 8: Degradation of Semiconductor Electrodes in Photoelectrochemical Devices: Principles and Case Studies -- 8.1 Introduction.
|
505 |
8 |
|
|a 8.2 Thermodynamic and Kinetic Requirements for Material Stability -- 8.2.1 Thermodynamic Aspects -- 8.2.1.1 Decomposition by Majority Carriers under Dark Conditions -- 8.2.1.1 Decomposition by Majority Carriers under Dark Conditions -- 8.2.1.2 Photo-induced Decomposition by Minority Carriers under Illumination -- 8.2.2 Kinetic Aspects -- 8.3 Degradation Mechanisms of Semiconductor Materials -- 8.3.1 Corrosion -- 8.3.2 Intercalation and Hydroxylation -- 8.3.3 Chemical Destabilization -- 8.4 Investigation of Material Instability -- 8.4.1 Cuprous Oxide -- 8.4.2 Titanium Dioxide -- 8.4.3 Bismuth Vanadate -- 8.5 Strategies for Improving Material Stability -- Acknowledgments -- References -- New Materials and Components -- Chapter 9: High Throughput Experimentation for the Discovery of Water Splitting Materials -- 9.1 Mission-driven Materials Discovery: Introduction and Strategies -- 9.1.1 High Throughput Screening for Specific Device Components and Operating Conditions -- 9.1.2 General Strategies for Constructing Experimental Screening Pipelines -- 9.2 Cross-cutting Capabilities: Materials Synthesis and Data Management -- 9.2.1 Inkjet Printing of Functional Metal Oxides -- 9.2.2 Combinatorial Physical Vapor Deposition -- 9.2.3 Thermal Processing -- 9.2.4 Data Management -- 9.3 Experimental Pipeline for Discovering OER Electrocatalysts -- 9.3.1 The Scanning Droplet Cell and Its Deployment for Electrocatalyst Discovery -- 9.3.2 Parallel Screening via Bubble Imaging -- 9.3.3 Screening Libraries with Unstable Catalysts -- 9.3.4 Materials Characterization for Electrocatalysts -- 9.4 Experimental Pipeline for Discovering Photoanodes -- 9.4.1 High Throughput Spectroscopy for Band Gap Screening -- 9.4.2 Colorimetry as a Parallel Screen -- 9.4.3 Photoelectrochemistry with the Scanning Droplet Cell.
|
505 |
8 |
|
|a 9.4.4 Material Characterization of Photoanodes: Linking to Theory -- 9.5 Combining Materials and Techniques for Discovery of Integrated Materials -- 9.6 Lessons Learned and Future Prospects -- Acknowledgments -- References -- Chapter 10: Membranes for Solar Fuels Devices -- 10.1 Transport Challenges in Membranes for Solar Fuels Devices -- 10.2 Membrane Materials and Structure -- 10.3 Commercial Membranes -- 10.4 Transport of Solutes in Membranes -- 10.5 Solute Sorption -- 10.6 Solute Diffusion -- 10.7 Water Sorption -- 10.8 Electrical Properties -- 10.9 Multicomponent Transport -- 10.10 Measurement of Transport Parameters in Membranes -- 10.11 Phenomena Affecting Transport: Physical Aging and Degradation -- 10.12 JCAP Membrane Research -- 10.13 Outlook for Membranes in CO2 Reduction Devices -- List of Symbols -- References -- Devices and Modelling -- Chapter 11: Prototyping Development of Integrated Solar-driven Water-splitting Cells -- 11.1 Introduction -- 11.2 Materials and Components -- 11.2.1 Selection and Design Consideration of Light Absorber Materials -- 11.2.1.1 Triple-junction Amorphous Silicon -- 11.2.1.2 Monolithic Tandem and Triple-junction Crystalline Silicon -- 11.2.1.3 Compound Semiconductor Multi-junction Photovoltaics -- 11.2.2 Selection and Design Consideration of Electrolytes -- 11.2.2.1 Electrolyte Effect on Transport Losses in a Device -- 11.2.2.2 Electrolyte Effect on the Stability of Semiconducting Light Absorbers -- 11.2.2.3 Electrolyte Effect on Catalytic Activity, Stability and Optical Transmittance -- 11.2.2.3.1 Effect of Unintentional Cation and Anion in Electrolyte on the Catalytic Activity -- 11.2.2.3.2 Electrolyte Effect on Activity and Stability -- 11.2.2.3.3 Electrolyte Effect on Light Absorption -- 11.2.2.3.4 Electrolyte Effect on Electrochromism of Electrocatalysts -- 11.2.3 Incorporation of Membrane Separators.
|
520 |
|
|
|a This book describes the critical areas of research and development towards viable integrated solar fuels systems, the current state of the art of these efforts and outlines future research needs.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Sustainable Energy & Development
|
650 |
|
0 |
|a Solar energy.
|
650 |
|
2 |
|a Solar Energy
|
650 |
|
6 |
|a Énergie solaire.
|
650 |
|
7 |
|a solar power.
|2 aat
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Solar energy.
|2 fast
|0 (OCoLC)fst01124984
|
700 |
1 |
|
|a Sharp, Ian D.,
|e editor.
|
700 |
1 |
|
|a Atwater, Harry A.
|q (Harry Albert),
|d 1960-
|e editor.
|
700 |
1 |
|
|a Lewerenz, Hans-Joachim,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Integrated solar fuel generators.
|d Cambridge : Royal Society of Chemistry, [2019]
|w (DLC) 2017279464
|
830 |
|
0 |
|a RSC energy and environment series ;
|v 22.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpISFG0004/toc
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1921624
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15805506
|
994 |
|
|
|a 92
|b IZTAP
|