Wireless power transfer : theory, technology, and applications /
The book has 13 chapter. Chapter 1 covers the introduction. Chapter 2 and 3 presents the basic theory of inductive coupling and resonance coupling WPT. Chapter 4 is intended for multihop wireless power transmission. Chapter 5 outlined the circuit theory on wireless couplers. Chapter 6 discussed the...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Institution of Engineering and Technology,
2018.
|
Colección: | IET energy engineering series ;
112. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro; Contents; About the editor; 1. Introduction / Naoki Shinohara; References; 2. Basic theory of inductive coupling / Hidetoshi Matsuki; 2.1 Introduction; 2.2 WPT system; 2.2.1 Basic theory of WPT system; 2.2.2 Microwave method; 2.2.3 Magnetic resonance method; 2.2.4 Electrical resonance method; 2.2.5 Electromagnetic induction method; 2.3 Magnetic induction; 2.3.1 Power transformer; 2.3.2 Magnetic induction (LC mode); 2.4 Medical applications; References; 3. Basic theory of resonance coupling WPT / Hiroshi Hirayama; 3.1 Classification of WPT systems
- 3.1.1 Classification of near-field and far-field WPT3.1.2 Classification of resonant WPT; 3.1.3 Relationship among WPT types; 3.2 Unified model of resonance coupling WPT; 3.2.1 Concept of the ''coupler''; 3.2.2 Unified model based on resonance and coupling; 3.2.3 Application for LC resonator; 3.2.4 Application for electric field coupling WPT; 3.2.5 Application for self-resonator; 3.3 Generalized model of WPT; 3.3.1 Energy flow in WPT system; 3.3.2 Generalized model; 3.3.3 Understanding of coupled-resonator WPT system through generalized model
- 3.3.4 Understanding of coupler-and-matching-circuit WPT system through generalized modelAcknowledgment; References; 4. Multi-hop wireless power transmission / Yoshiaki Narusue and Yoshihiro Kawahara; 4.1 Transfer distance extension using relay effect; 4.2 Multi-hop routing; 4.3 Equivalent circuit and transfer efficiency; 4.4 Design theory based on BPF theory; 4.5 Design theory for arbitrary hop power transmission; 4.6 Power efficiency estimation; References; 5. Circuit theory on wireless couplers / Takashi Ohira; 5.1 Introduction; 5.2 Inductive coupler; 5.2.1 Equivalent circuit
- 5.2.2 Coupling coefficient5.2.3 Q factor; 5.2.4 Coupling Q factor; 5.2.5 Optimum impedance; 5.2.6 Maximum efficiency; 5.3 Capacitive coupler; 5.3.1 Equivalent circuit; 5.3.2 Coupling coefficient; 5.3.3 Q factor; 5.3.4 Coupling Q factor; 5.3.5 Optimum admittance; 5.3.6 Maximum efficiency; 5.4 Generalized formulas; 5.4.1 Two-port black box; 5.4.2 Impedance matrix; 5.4.3 Generalized kQ; 5.4.4 Optimum load and input impedance; 5.4.5 Maximum efficiency; 5.5 Conclusion; Appendix A; A.1 Measurement of kQ in practice; Acknowledgments; References
- 6. Inverter/rectifier technologies on WPT systems / Hiroo Sekiya6.1 Introduction; 6.2 WPT system construction; 6.3 General theory of optimal WPT system designs; 6.3.1 Coupling coils; 6.3.2 Optimal design of coupling part; 6.3.3 Design strategies of rectifier and inverter; 6.4 High-efficiency rectifier; 6.4.1 Class D rectifier; 6.4.2 Effects of diode parasitic capacitance; 6.4.3 Class E rectifier; 6.4.4 Class E/F rectifier; 6.5 High-efficiency inverters; 6.5.1 Class D inverter; 6.5.2 Class E inverter; 6.5.3 Class DE inverter; 6.5.4 Class E/F inverter; 6.5.5 Class F inverter