|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
KNOVEL_on1048903169 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
180818s2017 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d IDB
|d OCLCQ
|d DKU
|d HUA
|d AU@
|d KNOVL
|d OCLCF
|d OCLCQ
|d MNU
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1048946861
|a 1057354575
|a 1058983779
|a 1117875380
|a 1136487097
|a 1144449983
|a 1264739937
|
020 |
|
|
|a 9781523118953
|
020 |
|
|
|a 1523118954
|
020 |
|
|
|z 9781781830987
|
020 |
|
|
|z 1781830983
|
029 |
1 |
|
|a AU@
|b 000065261752
|
035 |
|
|
|a (OCoLC)1048903169
|z (OCoLC)1048946861
|z (OCoLC)1057354575
|z (OCoLC)1058983779
|z (OCoLC)1117875380
|z (OCoLC)1136487097
|z (OCoLC)1144449983
|z (OCoLC)1264739937
|
050 |
|
4 |
|a QD40
|b .D647 2017eb
|
082 |
0 |
4 |
|a 540
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dogra, S. K.
|
245 |
1 |
0 |
|a Symmetry and group theory in chemistry.
|
250 |
|
|
|a Second edition.
|
260 |
|
|
|a London :
|b New Academic Science,
|c 2017.
|
300 |
|
|
|a 1 online resource (521 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Preface; Contents; Chapter 1: Introduction: Concept of Symmetry, Symmetry Elements and Symmetry Point Groups; 1.1 Symmetry; 1.2 Symmetry in Chemistry; 1.3 Cartesian Coordinate System, Right Hand Thumb Rule and Rotation about the Coordinate Axes; 1.3.1 Conventions Regarding Coordinate Systems and Axes; 1.4 Symmetry Operations; 1.4.1 Identity; 1.4.2 Centre of Symmetry or Inversion Centre; 1.4.3 Plane of Symmetry and Reflection Plane; 1.4.4 n-Fold Rotation or Symmetry Axis (Proper Axis); 1.4.5 Rotation-Reflection Axes (Improper Axis); 1.4.6 Products of Symmetry Operations.
|
505 |
8 |
|
|a 1.5 Concept of Symmetry Point Group1.5.1 Identity Number; 1.5.2 Laws of Combination; 1.5.3 Law of Associative Combination; 1.5.4 Inverse Number; 1.5.5 Cyclic Group; 1.5.6 Isomorphic Group; 1.5.7 Homomorphic Group; 1.5.8 Order of a Group; 1.5.9 Subgroups; 1.5.10 Similarity Transform and Conjugate Elements; 1.5.11 Classes; 1.5.12 Class Multiplication; 1.6 Hierarchy of Point Groups; 1.6.1 Minimum of Symmetry; 1.6.2 S2n Groups; 1.6.3 Cnh Groups; 1.6.4 Cnv Groups; 1.6.5 Dn Groups; 1.6.6 Dnd Groups; 1.6.7 Dnh Group; 1.6.8 Cubic Groups (Plato's Solids); 1.6.9 Tetrahedral Group (Td).
|
505 |
8 |
|
|a 1.6.10 Octahedron Group (Oh)1.6.11 Continuous Symmetry Point Groups; 1.6.12 O(3) Point Group; 1.7 Basic Symmetry Point Groups of Molecules; 1.7.1 Procedure for Symmetry Classification of Molecules; 1.8 Some Miscellaneous Topics; 1.8.1 Operations of the Same Class; 1.8.2 Inverse of a Symmetry Operation; 1.8.3 Equivalent Symmetry Elements and Equivalent Atoms; 1.8.4 Chemical Equivalence; 1.8.5 Symmetry and Nuclear Magnetic Resonance Spectroscopy; 1.8.6 Dipole Moments; 1.8.7 Optical Activity and Symmetry; 1.8.8 Symmetry and Origin of Absorption and Circular Dichroism Phenomena; Problems.
|
505 |
8 |
|
|a Chapter 2: Eulogy to Operators, Vectors, Matrices and Determinants2.1 Introduction; 2.2 Operator; 2.3 Vectors; 2.4 Matrices and Some of their Characteristics; 2.4.1 Matrix Multiplication; 2.4.2 Addition or Subtraction of Matrices; 2.4.3 Cofactor of a Matrix; 2.4.4 Transpose of a Matrix; 2.4.5 Adjoint of a Matrix; 2.4.6 Inverse of a Matrix; 2.4.7 Eigenvalues Eigenfunctions Equations; 2.4.8 Orthogonality; 2.4.9 Diagonal Matrix; 2.4.10 Similarity Transform; 2.4.11 Adjoint and Complex Conjugate Matrices; 2.4.12 Real Matrix; 2.4.13 Hermitian Matrix; 2.4.14 Unitary Matrix.
|
505 |
8 |
|
|a 2.4.15 Partitioned (or Factored) Matrices2.4.16 Character or Trace (or Spur in German) of Set of Irreducible Matrices; 2.4.17 Elementary Transformation of Matrices; 2.5 Characteristics of Determinants; 2.6 Concept of Symmetry Transformation of Functions; 2.7 Matrix Notation for Symmetry Transformations; 2.7.1 The Identity; 2.7.2 Proper Rotation; 2.7.3 Improper Rotation; 2.7.4 Reflection Through a Plane; 2.7.5 Inversion; 2.8 Representation; 2.8.1 Group Representation; 2.8.2 Equivalent of Representations; 2.8.3 Representation of an Atom; 2.8.4 Contribution to Trace of the Representations.
|
500 |
|
|
|a 2.8.5 Concept of Reducible and Irreducible Representations.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Chemistry & Chemical Engineering
|
650 |
|
0 |
|a Group theory.
|
650 |
|
0 |
|a Chemistry
|x Mathematics.
|
650 |
|
6 |
|a Théorie des groupes.
|
650 |
|
7 |
|a Chemistry
|x Mathematics.
|2 fast
|0 (OCoLC)fst00853398
|
650 |
|
7 |
|a Group theory.
|2 fast
|0 (OCoLC)fst00948521
|
700 |
1 |
|
|a Randhawa, H. S
|c (Assistant professor)
|
776 |
0 |
8 |
|i Print version:
|a Dogra, S.K.
|t Symmetry and Group Theory in Chemistry.
|d London : New Academic Science, ©2016
|z 9781781830208
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpSGTCE002/toc
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5490842
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15652541
|
994 |
|
|
|a 92
|b IZTAP
|