Cargando…

Open resonator microwave sensor systems for industrial gauging : a practical design approach /

The following topics are dealt with: open resonator microwave sensor systems; industrial gauging; transmission line resonators; planar transmission lines; coupled structures; microwave measurements; fabric-coating monitoring; network analyzer; finite-difference time-domain method; FDTD method and el...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ida, Nathan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Stevenage, United Kingdom : Institution of Engineering & Technology, 2018.
Colección:IET control, robotics and sensors series ; 103.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Contents
  • Preface
  • 1. Introduction to microwaves
  • 1.1 General
  • 1.2 The microwave domain
  • 1.3 History
  • 1.4 Advantages and disadvantages of microwaves for testing, measurements, and gauging
  • 1.5 Energy associated with microwaves
  • 1.6 Properties of fields at high frequencies
  • 1.7 Microwaves and mechanics
  • 1.8 Instrumentation and instruments
  • 2. Transmission lines and transmission line resonators
  • 2.1 Introduction
  • 2.2 The transmission line
  • 2.3 Transmission line parameters
  • 2.3.1 Calculation of line parameters
  • 2.4 The transmission line equations
  • 2.4.1 Time-domain transmission line equations
  • 2.5 Types of transmission lines
  • 2.5.1 The lossless transmission line
  • 2.5.2 The long transmission line
  • 2.5.3 The distortionless transmission line
  • 2.5.4 The low-resistance transmission line
  • 2.6 The field approach to transmission lines
  • 2.7 Finite transmission lines
  • 2.7.1 The load reflection coefficient
  • 2.7.2 Line impedance and the generalized reflection coefficient
  • 2.7.3 The lossless, terminated transmission line
  • 2.7.4 The lossless, matched transmission line
  • 2.7.5 The lossless, shorted transmission line
  • 2.7.6 The lossless, open transmission line
  • 2.7.7 The lossless, resistively loaded transmission line
  • 2.8 Power relations on a general transmission line
  • 2.9 Passive transmission line circuits
  • 2.9.1 Impedance matching
  • 2.9.2 Power dividers
  • 2.9.3 Directional couplers
  • 2.9.4 Antennas and probes
  • 2.9.5 Attenuators
  • 2.9.6 Other circuits
  • 2.10 Transmission line resonators
  • 2.10.1 The concept of resonance
  • 2.10.2 The series RLC circuit
  • 2.10.3 Parallel resonant circuit
  • 2.11 Series and parallel transmission line resonators
  • 2.11.1 Short-circuited l/2 transmission line resonator
  • 2.11.2 Open-circuited l/2 transmission line resonator.
  • 2.11.3 Additional properties of transmission line resonators
  • 2.11.4 Tapped transmission line resonators
  • 2.12 The Smith chat
  • Bibliography
  • 3. Planar transmission lines and coupled structures
  • 3.1 Introduction
  • 3.2 Planar transmission lines: the stripline
  • 3.2.1 Coupled transmission lines
  • 3.3 Waveguides and cavity resonators
  • 3.3.1 TE propagation in parallel plate waveguides
  • 3.3.2 TM propagation in parallel plate waveguides
  • 3.3.3 Rectangular waveguides
  • 3.3.4 TM modes in rectangular waveguides
  • 3.3.5 TE modes in rectangular waveguides
  • 3.3.6 Cavity resonators
  • 3.3.7 TM modes in cavity resonators
  • 3.3.8 TE modes in cavity resonators
  • 3.3.9 Energy relations in a cavity resonator
  • 3.4 Coupled stripline resonators
  • 3.5 Resonant cavity perturbation
  • 3.5.1 Whole cavity perturbation, lossless media
  • 3.5.2 Cavity perturbation by small, lossless material samples
  • 3.5.3 Cavity perturbation, lossy media
  • Bibliography
  • 4. Microwave measurements
  • 4.1 Introduction
  • 4.2 N-Port networks
  • 4.2.1 The scattering matrix and S-parameters
  • 4.2.2 Generalized scattering parameters
  • 4.2.3 Some properties of S-parameters
  • 4.2.4 The ABCD-parameters and the transmission matrix
  • 4.2.5 Relations between the various parameters
  • 4.2.6 Shift of reference plane
  • 4.2.7 Transformations between parameters
  • 4.3 Use of the S-parameters for practical measurements
  • 4.3.1 Matching of loads
  • 4.3.2 Detection of resonance
  • 4.3.3 Determination of losses
  • 4.4 Other measurements
  • 4.4.1 Frequency measurements
  • 4.4.2 Wavemeters
  • 4.4.3 Power measurements
  • 4.5 Power sensors and detectors
  • 4.5.1 Diode power sensors
  • 4.5.2 Thermistors, bolometers, and thermocouples
  • 4.5.3 Measurement of power density
  • 4.6 Measurement of Q-factor of resonators
  • 4.6.1 Q-Factors for series resonance.
  • 4.6.2 Q-Factors for parallel resonance
  • 4.7 Measurement of impedance
  • 4.8 Measurement of permittivity and loss tangent
  • 4.9 Waveguide method of measurement
  • 4.10 Cavity perturbation method
  • 4.11 Other methods
  • Bibliography
  • 5. Design of sensors for rubber thickness and fabric-coating monitoring
  • 5.1 Introduction
  • 5.2 Sensor design for fabric coatings
  • 5.2.1 Sensor modifications and optimization
  • 5.2.2 Shielding of the sensor
  • 5.2.3 Simulation and optimization
  • 5.2.4 Sensitivity to motion of the plates
  • 5.2.5 Mechanical design
  • 5.3 Sensor design for rubber thickness sensing
  • 5.3.1 Simulation and optimization
  • 5.4 Alternative sensing strategies
  • 5.4.1 Capacitive sensors
  • 5.4.2 Reflection and transmission sensors
  • Further reading
  • 6. Evaluation of the sensors
  • 6.1 Introduction
  • 6.2 Empty sensor tests
  • 6.3 Laboratory tests
  • 6.4 Online testing results
  • 6.5 Performance evaluation
  • 6.5.1 Effect of distance from antenna tips to center plate
  • 6.5.2 Effect of flutter
  • 6.5.3 Effect of cell offset
  • 6.6 Calibration of the sensor
  • 7. Implementation and testing
  • 7.1 Introduction
  • 7.2 The mechanical system
  • 7.3 Evaluation of the mechanical system
  • 7.4 Calibration
  • 7.5 Compensation for environmental conditions
  • 7.5.1 Compensation method
  • 8. The network analyzer
  • 8.1 Introduction
  • 8.2 What is a network analyzer?
  • 8.2.1 Scalar and vector network analyzers
  • 8.3 The measurement process
  • 8.3.1 Calibration
  • 8.3.2 Measurements
  • 8.4 Measurement of complex permittivity and loss tangent
  • 8.4.1 Resonant methods
  • 8.4.2 Transmission line methods
  • 8.4.3 Measurements in space
  • 8.5 Integration of network analyzers in designs
  • Further reading
  • Appendix A. Electromagnetic radiation safety
  • A.1 Introduction
  • A.2 Field measurements
  • A.3 Conclusions
  • Bibliography.
  • Appendix B. Material properties
  • B.1 Introduction
  • B.2 Measurements
  • B.3 Effect of humidity and temperature
  • Bibliography
  • Appendix C. The finite-difference time-domain (FDTD) method
  • C.1 The finite difference time domain equations
  • C.2 Boundary conditions
  • C.3 Near-to-far-field transformation
  • C.4 Modeling material interfaces
  • C.5 Inclusion of sources
  • Bibliography
  • Appendix D. Selected elements of electromagnetics
  • D.1 Maxwell's equations
  • D.1.1 Maxwell's equations: the time-harmonic form
  • D.1.2 Source-free equations
  • D.1.3 Interface conditions
  • D.2 The electromagnetic wave equation and its solution
  • D.2.1 Time-harmonic wave equations
  • D.2.2 Solution of the wave equation
  • D.2.3 Solution for uniform plane waves in lossless media
  • D.3 Propagation of plane waves in materials
  • D.3.1 Propagation of plane waves in lossy dielectrics
  • D.3.2 Propagation of plane waves in low-loss dielectrics
  • D.3.3 Propagation of plane waves in conductors or high-loss dielectrics
  • D.4 The Poynting theorem and electromagnetic power
  • D.4.1 The Poynting theorem in the time domain
  • D.4.2 The complex Poynting vector
  • D.5 Reflection, transmission, and refraction of plane waves
  • D.5.1 Oblique incidence on a dielectric interface: perpendicular polarization
  • D.5.2 Oblique incidence on a dielectric interface: parallel polarization
  • D.5.3 Reflection and transmission on dielectric interfaces: normal incidence
  • D.5.4 Reflection and transmission on perfect conductors
  • Further reading
  • Index.