Cargando…

Fuel cell systems explained /

Since publication of the first edition of Fuel Cell Systems Explained, three compelling drivers have supported the continuing development of fuel cell technology. These are: the need to maintain energy security in an energy-hungry world, the desire to move towards zero-emission vehicles and power pl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dicks, Andrew (Autor), Rand, D. A. J. (David Anthony James), 1942- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ, USA : Wiley, [2018]
Edición:Third edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • Brief Biographies
  • Preface
  • Acknowledgments
  • Acronyms and Initialisms
  • Symbols and Units
  • Chapter 1 Introducing Fuel Cells
  • 1.1 Historical Perspective
  • 1.2 Fuel-Cell Basics
  • 1.3 Electrode Reaction Rates
  • 1.4 Stack Design
  • 1.5 Gas Supply and Cooling
  • 1.6 Principal Technologies
  • 1.7 Mechanically Rechargeable Batteries and Other Fuel Cells
  • 1.7.1 Metal-Air Cells
  • 1.7.2 Redox Flow Cells
  • 1.7.3 Biological Fuel Cells
  • 1.8 Balance-of-Plant Components
  • 1.9 Fuel-Cell Systems: Key Parameters
  • 1.10 Advantages and Applications
  • Further Reading
  • Chapter 2 Efficiency and Open-Circuit Voltage
  • 2.1 Open-Circuit Voltage: Hydrogen Fuel Cell
  • 2.2 Open-Circuit Voltage: Other Fuel Cells and Batteries
  • 2.3 Efficiency and Its Limits
  • 2.4 Efficiency and Voltage
  • 2.5 Influence of Pressure and Gas Concentration
  • 2.5.1 Nernst Equation
  • 2.5.2 Hydrogen Partial Pressure
  • 2.5.3 Fuel and Oxidant Utilization
  • 2.5.4 System Pressure
  • 2.6 Summary
  • Further Reading
  • Chapter 3 Operational Fuel-Cell Voltages
  • 3.1 Fundamental Voltage: Current Behaviour
  • 3.2 Terminology
  • 3.3 Fuel-Cell Irreversibilities
  • 3.4 Activation Losses
  • 3.4.1 The Tafel Equation
  • 3.4.2 The Constants in the Tafel Equation
  • 3.4.3 Reducing the Activation Overpotential
  • 3.5 Internal Currents and Fuel Crossover
  • 3.6 Ohmic Losses
  • 3.7 Mass-Transport Losses
  • 3.8 Combining the Irreversibilities
  • 3.9 The Electrical Double-Layer
  • 3.10 Techniques for Distinguishing Irreversibilities
  • 3.10.1 Cyclic Voltammetry
  • 3.10.2 AC Impedance Spectroscopy
  • 3.10.3 Current Interruption
  • Further Reading
  • Chapter 4 Proton-Exchange Membrane Fuel Cells
  • 4.1 Overview
  • 4.2 Polymer Electrolyte: Principles of Operation
  • 4.2.1 Perfluorinated Sulfonic Acid Membrane.
  • 4.2.2 Modified Perfluorinated Sulfonic Acid Membranes
  • 4.2.3 Alternative Sulfonated and Non-Sulfonated Membranes
  • 4.2.4 Acid-Base Complexes and Ionic Liquids
  • 4.2.5 High-Temperature Proton Conductors
  • 4.3 Electrodes and Electrode Structure
  • 4.3.1 Catalyst Layers: Platinum-Based Catalysts
  • 4.3.2 Catalyst Layers: Alternative Catalysts for Oxygen Reduction
  • 4.3.2.1 Macrocyclics
  • 4.3.2.2 Chalcogenides
  • 4.3.2.3 Conductive Polymers
  • 4.3.2.4 Nitrides
  • 4.3.2.5 Functionalized Carbons
  • 4.3.2.6 Heteropolyacids
  • 4.3.3 Catalyst Layer: Negative Electrode
  • 4.3.4 Catalyst Durability
  • 4.3.5 Gas-Diffusion Layer
  • 4.4 Water Management
  • 4.4.1 Hydration and Water Movement
  • 4.4.2 Air Flow and Water Evaporation
  • 4.4.3 Air Humidity
  • 4.4.4 Self-Humidified Cells
  • 4.4.5 External Humidification: Principles
  • 4.4.6 External Humidification: Methods
  • 4.5 Cooling and Air Supply
  • 4.5.1 Cooling with Cathode Air Supply
  • 4.5.2 Separate Reactant and Cooling Air
  • 4.5.3 Water Cooling
  • 4.6 Stack Construction Methods
  • 4.6.1 Introduction
  • 4.6.2 Carbon Bipolar Plates
  • 4.6.3 Metal Bipolar Plates
  • 4.6.4 Flow-Field Patterns
  • 4.6.5 Other Topologies
  • 4.6.6 Mixed Reactant Cells
  • 4.7 Operating Pressure
  • 4.7.1 Technical Issues
  • 4.7.2 Benefits of High Operating Pressures
  • 4.7.2.1 Current
  • 4.7.3 Other Factors
  • 4.8 Fuel Types
  • 4.8.1 Reformed Hydrocarbons
  • 4.8.2 Alcohols and Other Liquid Fuels
  • 4.9 Practical and Commercial Systems
  • 4.9.1 Small-Scale Systems
  • 4.9.2 Medium-Scale for Stationary Applications
  • 4.9.3 Transport System Applications
  • 4.10 System Design, Stack Lifetime and Related Issues
  • 4.10.1 Membrane Degradation
  • 4.10.2 Catalyst Degradation
  • 4.10.3 System Control
  • 4.11 Unitized Regenerative Fuel Cells
  • Further Reading
  • Chapter 5 Alkaline Fuel Cells
  • 5.1 Principles of Operation.
  • 5.2 System Designs
  • 5.2.1 Circulating Electrolyte Solution
  • 5.2.2 Static Electrolyte Solution
  • 5.2.3 Dissolved Fuel
  • 5.2.4 Anion-Exchange Membrane Fuel Cells
  • 5.3 Electrodes
  • 5.3.1 Sintered Nickel Powder
  • 5.3.2 Raney Metals
  • 5.3.3 Rolled Carbon
  • 5.3.4 Catalysts
  • 5.4 Stack Designs
  • 5.4.1 Monopolar and Bipolar
  • 5.4.2 Other Stack Designs
  • 5.5 Operating Pressure and Temperature
  • 5.6 Opportunities and Challenges
  • Further Reading
  • Chapter 6 Direct Liquid Fuel Cells
  • 6.1 Direct Methanol Fuel Cells
  • 6.1.1 Principles of Operation
  • 6.1.2 Electrode Reactions with a Proton-Exchange Membrane Electrolyte
  • 6.1.3 Electrode Reactions with an Alkaline Electrolyte
  • 6.1.4 Anode Catalysts
  • 6.1.5 Cathode Catalysts
  • 6.1.6 System Designs
  • 6.1.7 Fuel Crossover
  • 6.1.8 Mitigating Fuel Crossover: Standard Techniques
  • 6.1.9 Mitigating Fuel Crossover: Prospective Techniques
  • 6.1.10 Methanol Production
  • 6.1.11 Methanol Safety and Storage
  • 6.2 Direct Ethanol Fuel Cells
  • 6.2.1 Principles of Operation
  • 6.2.2 Ethanol Oxidation, Catalyst and Reaction Mechanism
  • 6.2.3 Low-Temperature Operation: Performance and Challenges
  • 6.2.4 High-Temperature Direct Ethanol Fuel Cells
  • 6.3 Direct Propanol Fuel Cells
  • 6.4 Direct Ethylene Glycol Fuel Cells
  • 6.4.1 Principles of Operation
  • 6.4.2 Ethylene Glycol: Anodic Oxidation
  • 6.4.3 Cell Performance
  • 6.5 Formic Acid Fuel Cells
  • 6.5.1 Formic Acid: Anodic Oxidation
  • 6.5.2 Cell Performance
  • 6.6 Borohydride Fuel Cells
  • 6.6.1 Anode Catalysts
  • 6.6.2 Challenges
  • 6.7 Application of Direct Liquid Fuel Cells
  • Further Reading
  • Chapter 7 Phosphoric Acid Fuel Cells
  • 7.1 High-Temperature Fuel-Cell Systems
  • 7.2 System Design
  • 7.2.1 Fuel Processing
  • 7.2.2 Fuel Utilization
  • 7.2.3 Heat-Exchangers
  • 7.2.3.1 Designs
  • 7.2.3.2 Exergy Analysis
  • 7.2.3.3 Pinch Analysis.
  • 7.3 Principles of Operation
  • 7.3.1 Electrolyte
  • 7.3.2 Electrodes and Catalysts
  • 7.3.3 Stack Construction
  • 7.3.4 Stack Cooling and Manifolding
  • 7.4 Performance
  • 7.4.1 Operating Pressure
  • 7.4.2 Operating Temperature
  • 7.4.3 Effects of Fuel and Oxidant Composition
  • 7.4.4 Effects of Carbon Monoxide and Sulfur
  • 7.5 Technological Developments
  • Further Reading
  • Chapter 8 Molten Carbonate Fuel Cells
  • 8.1 Principles of Operation
  • 8.2 Cell Components
  • 8.2.1 Electrolyte
  • 8.2.2 Anode
  • 8.2.3 Cathode
  • 8.2.4 Non-Porous Components
  • 8.3 Stack Configuration and Sealing
  • 8.3.1 Manifolding
  • 8.3.2 Internal and External Reforming
  • 8.4 Performance
  • 8.4.1 Influence of Pressure
  • 8.4.2 Influence of Temperature
  • 8.5 Practical Systems
  • 8.5.1 Fuel Cell Energy (USA)
  • 8.5.2 Fuel Cell Energy Solutions (Europe)
  • 8.5.3 Facilities in Japan
  • 8.5.4 Facilities in South Korea
  • 8.6 Future Research and Development
  • 8.7 Hydrogen Production and Carbon Dioxide Separation
  • 8.8 Direct Carbon Fuel Cell
  • Further Reading
  • Chapter 9 Solid Oxide Fuel Cells
  • 9.1 Principles of Operation
  • 9.1.1 High-Temperature (HT) Cells
  • 9.1.2 Low-Temperature (IT) Cells
  • 9.2 Components
  • 9.2.1 Zirconia Electrolyte for HT-Cells
  • 9.2.2 Electrolytes for IT-Cells
  • 9.2.2.1 Ceria
  • 9.2.2.2 Perovskites
  • 9.2.2.3 Other Materials
  • 9.2.3 Anodes
  • 9.2.3.1 Nickel-YSZ
  • 9.2.3.2 Cathode
  • 9.2.3.3 Mixed Ionic-Electronic Conductor Anode
  • 9.2.4 Cathode
  • 9.2.5 Interconnect Material
  • 9.2.6 Sealing Materials
  • 9.3 Practical Design and Stacking Arrangements
  • 9.3.1 Tubular Design
  • 9.3.2 Planar Design
  • 9.4 Performance
  • 9.5 Developmental and Commercial Systems
  • 9.5.1 Tubular SOFCs
  • 9.5.2 Planar SOFCs
  • 9.6 Combined-Cycle and Other Systems
  • Further Reading
  • Chapter 10 Fuels for Fuel Cells
  • 10.1 Introduction
  • 10.2 Fossil Fuels.
  • 10.2.1 Petroleum
  • 10.2.2 Petroleum from Tar Sands, Oil Shales and Gas Hydrates
  • 10.2.3 Coal and Coal Gases
  • 10.2.4 Natural Gas and Coal-Bed Methane (Coal-Seam Gas)
  • 10.3 Biofuels
  • 10.4 Basics of Fuel Processing
  • 10.4.1 Fuel-Cell Requirements
  • 10.4.2 Desulfurization
  • 10.4.3 Steam Reforming
  • 10.4.4 Carbon Formation and Pre-Reforming
  • 10.4.5 Internal Reforming
  • 10.4.5.1 Indirect Internal Reforming (IIR)
  • 10.4.5.2 Direct Internal Reforming (DIR)
  • 10.4.6 Direct Hydrocarbon Oxidation
  • 10.4.7 Partial Oxidation and Autothermal Reforming
  • 10.4.8 Solar-Thermal Reforming
  • 10.4.9 Sorbent-Enhanced Reforming
  • 10.4.10 Hydrogen Generation by Pyrolysis or Thermal Cracking of Hydrocarbons
  • 10.4.11 Further Fuel Processing: Removal of Carbon Monoxide
  • 10.5 Membrane Developments for Gas Separation
  • 10.5.1 Non-Porous Metal Membranes
  • 10.5.2 Non-Porous Ceramic Membranes
  • 10.5.3 Porous Membranes
  • 10.5.4 Oxygen Separation
  • 10.6 Practical Fuel Processing: Stationary Applications
  • 10.6.1 Industrial Steam Reforming
  • 10.6.2 Fuel-Cell Plants Operating with Steam Reforming of Natural Gas
  • 10.6.3 Reformer and Partial Oxidation Designs
  • 10.6.3.1 Conventional Packed-Bed Catalytic Reactors
  • 10.6.3.2 Compact Reformers
  • 10.6.3.3 Plate Reformers and Microchannel Reformers
  • 10.6.3.4 Membrane Reactors
  • 10.6.3.5 Non-Catalytic Partial Oxidation Reactors
  • 10.6.3.6 Catalytic Partial Oxidation Reactors
  • 10.7 Practical Fuel Processing: Mobile Applications
  • 10.8 Electrolysers
  • 10.8.1 Operation of Electrolysers
  • 10.8.2 Applications
  • 10.8.3 Electrolyser Efficiency
  • 10.8.4 Photoelectrochemical Cells
  • 10.9 Thermochemical Hydrogen Production and Chemical Looping
  • 10.9.1 Thermochemical Cycles
  • 10.9.2 Chemical Looping
  • 10.10 Biological Production of Hydrogen
  • 10.10.1 Introduction.