Cargando…

Fuel cell systems explained /

Since publication of the first edition of Fuel Cell Systems Explained, three compelling drivers have supported the continuing development of fuel cell technology. These are: the need to maintain energy security in an energy-hungry world, the desire to move towards zero-emission vehicles and power pl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dicks, Andrew (Autor), Rand, D. A. J. (David Anthony James), 1942- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ, USA : Wiley, [2018]
Edición:Third edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1029419178
003 OCoLC
005 20231027140348.0
006 m o d
007 cr |||||||||||
008 171204s2018 nju ob 001 0 eng
010 |a  2017058097 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d NLE  |d DLC  |d OCLCF  |d N$T  |d EBLCP  |d DG1  |d MERER  |d UPM  |d UAB  |d YDX  |d CNCGM  |d WYU  |d LVT  |d U3W  |d OCLCQ  |d KNOVL  |d OCLCQ  |d UKMGB  |d OCLCQ  |d SFB  |d AAA  |d OCLCQ  |d OCLCO 
015 |a GBB853269  |2 bnb 
016 7 |a 018796570  |2 Uk 
019 |a 1013988692  |a 1028979467  |a 1048275864  |a 1050603247  |a 1054896215  |a 1229744784 
020 |a 9781118706961  |q (epub) 
020 |a 111870696X 
020 |a 9781118706978  |q (pdf) 
020 |a 1118706978 
020 |a 9781118706985 
020 |a 1118706986 
020 |a 9781118706992 
020 |a 1118706994 
020 |a 9781523123551  |q (electronic bk.) 
020 |a 1523123559  |q (electronic bk.) 
020 |z 9781118613528  |q (cloth) 
020 |z 111861352X 
029 1 |a AU@  |b 000061256115 
029 1 |a AU@  |b 000065482010 
029 1 |a CHBIS  |b 011327455 
029 1 |a CHNEW  |b 001003232 
029 1 |a CHVBK  |b 516429558 
029 1 |a CHVBK  |b 555455173 
029 1 |a GBVCP  |b 1019260890 
029 1 |a UKMGB  |b 018796570 
029 1 |a AU@  |b 000074359665 
035 |a (OCoLC)1029419178  |z (OCoLC)1013988692  |z (OCoLC)1028979467  |z (OCoLC)1048275864  |z (OCoLC)1050603247  |z (OCoLC)1054896215  |z (OCoLC)1229744784 
037 |a 9781118706961  |b Wiley 
042 |a pcc 
050 0 0 |a TK2931 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 0 |a 621.31/2429  |2 23 
049 |a UAMI 
100 1 |a Dicks, Andrew,  |e author. 
245 1 0 |a Fuel cell systems explained /  |c Andrew L Dicks, Griffith University, Brisbane, Australia, David A J Rand, CSIRO Energy Flagship, Melbourne, Australia. 
250 |a Third edition. 
264 1 |a Hoboken, NJ, USA :  |b Wiley,  |c [2018] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Intro -- Title Page -- Copyright Page -- Contents -- Brief Biographies -- Preface -- Acknowledgments -- Acronyms and Initialisms -- Symbols and Units -- Chapter 1 Introducing Fuel Cells -- 1.1 Historical Perspective -- 1.2 Fuel-Cell Basics -- 1.3 Electrode Reaction Rates -- 1.4 Stack Design -- 1.5 Gas Supply and Cooling -- 1.6 Principal Technologies -- 1.7 Mechanically Rechargeable Batteries and Other Fuel Cells -- 1.7.1 Metal-Air Cells -- 1.7.2 Redox Flow Cells -- 1.7.3 Biological Fuel Cells -- 1.8 Balance-of-Plant Components -- 1.9 Fuel-Cell Systems: Key Parameters -- 1.10 Advantages and Applications -- Further Reading -- Chapter 2 Efficiency and Open-Circuit Voltage -- 2.1 Open-Circuit Voltage: Hydrogen Fuel Cell -- 2.2 Open-Circuit Voltage: Other Fuel Cells and Batteries -- 2.3 Efficiency and Its Limits -- 2.4 Efficiency and Voltage -- 2.5 Influence of Pressure and Gas Concentration -- 2.5.1 Nernst Equation -- 2.5.2 Hydrogen Partial Pressure -- 2.5.3 Fuel and Oxidant Utilization -- 2.5.4 System Pressure -- 2.6 Summary -- Further Reading -- Chapter 3 Operational Fuel-Cell Voltages -- 3.1 Fundamental Voltage: Current Behaviour -- 3.2 Terminology -- 3.3 Fuel-Cell Irreversibilities -- 3.4 Activation Losses -- 3.4.1 The Tafel Equation -- 3.4.2 The Constants in the Tafel Equation -- 3.4.3 Reducing the Activation Overpotential -- 3.5 Internal Currents and Fuel Crossover -- 3.6 Ohmic Losses -- 3.7 Mass-Transport Losses -- 3.8 Combining the Irreversibilities -- 3.9 The Electrical Double-Layer -- 3.10 Techniques for Distinguishing Irreversibilities -- 3.10.1 Cyclic Voltammetry -- 3.10.2 AC Impedance Spectroscopy -- 3.10.3 Current Interruption -- Further Reading -- Chapter 4 Proton-Exchange Membrane Fuel Cells -- 4.1 Overview -- 4.2 Polymer Electrolyte: Principles of Operation -- 4.2.1 Perfluorinated Sulfonic Acid Membrane. 
505 8 |a 4.2.2 Modified Perfluorinated Sulfonic Acid Membranes -- 4.2.3 Alternative Sulfonated and Non-Sulfonated Membranes -- 4.2.4 Acid-Base Complexes and Ionic Liquids -- 4.2.5 High-Temperature Proton Conductors -- 4.3 Electrodes and Electrode Structure -- 4.3.1 Catalyst Layers: Platinum-Based Catalysts -- 4.3.2 Catalyst Layers: Alternative Catalysts for Oxygen Reduction -- 4.3.2.1 Macrocyclics -- 4.3.2.2 Chalcogenides -- 4.3.2.3 Conductive Polymers -- 4.3.2.4 Nitrides -- 4.3.2.5 Functionalized Carbons -- 4.3.2.6 Heteropolyacids -- 4.3.3 Catalyst Layer: Negative Electrode -- 4.3.4 Catalyst Durability -- 4.3.5 Gas-Diffusion Layer -- 4.4 Water Management -- 4.4.1 Hydration and Water Movement -- 4.4.2 Air Flow and Water Evaporation -- 4.4.3 Air Humidity -- 4.4.4 Self-Humidified Cells -- 4.4.5 External Humidification: Principles -- 4.4.6 External Humidification: Methods -- 4.5 Cooling and Air Supply -- 4.5.1 Cooling with Cathode Air Supply -- 4.5.2 Separate Reactant and Cooling Air -- 4.5.3 Water Cooling -- 4.6 Stack Construction Methods -- 4.6.1 Introduction -- 4.6.2 Carbon Bipolar Plates -- 4.6.3 Metal Bipolar Plates -- 4.6.4 Flow-Field Patterns -- 4.6.5 Other Topologies -- 4.6.6 Mixed Reactant Cells -- 4.7 Operating Pressure -- 4.7.1 Technical Issues -- 4.7.2 Benefits of High Operating Pressures -- 4.7.2.1 Current -- 4.7.3 Other Factors -- 4.8 Fuel Types -- 4.8.1 Reformed Hydrocarbons -- 4.8.2 Alcohols and Other Liquid Fuels -- 4.9 Practical and Commercial Systems -- 4.9.1 Small-Scale Systems -- 4.9.2 Medium-Scale for Stationary Applications -- 4.9.3 Transport System Applications -- 4.10 System Design, Stack Lifetime and Related Issues -- 4.10.1 Membrane Degradation -- 4.10.2 Catalyst Degradation -- 4.10.3 System Control -- 4.11 Unitized Regenerative Fuel Cells -- Further Reading -- Chapter 5 Alkaline Fuel Cells -- 5.1 Principles of Operation. 
505 8 |a 5.2 System Designs -- 5.2.1 Circulating Electrolyte Solution -- 5.2.2 Static Electrolyte Solution -- 5.2.3 Dissolved Fuel -- 5.2.4 Anion-Exchange Membrane Fuel Cells -- 5.3 Electrodes -- 5.3.1 Sintered Nickel Powder -- 5.3.2 Raney Metals -- 5.3.3 Rolled Carbon -- 5.3.4 Catalysts -- 5.4 Stack Designs -- 5.4.1 Monopolar and Bipolar -- 5.4.2 Other Stack Designs -- 5.5 Operating Pressure and Temperature -- 5.6 Opportunities and Challenges -- Further Reading -- Chapter 6 Direct Liquid Fuel Cells -- 6.1 Direct Methanol Fuel Cells -- 6.1.1 Principles of Operation -- 6.1.2 Electrode Reactions with a Proton-Exchange Membrane Electrolyte -- 6.1.3 Electrode Reactions with an Alkaline Electrolyte -- 6.1.4 Anode Catalysts -- 6.1.5 Cathode Catalysts -- 6.1.6 System Designs -- 6.1.7 Fuel Crossover -- 6.1.8 Mitigating Fuel Crossover: Standard Techniques -- 6.1.9 Mitigating Fuel Crossover: Prospective Techniques -- 6.1.10 Methanol Production -- 6.1.11 Methanol Safety and Storage -- 6.2 Direct Ethanol Fuel Cells -- 6.2.1 Principles of Operation -- 6.2.2 Ethanol Oxidation, Catalyst and Reaction Mechanism -- 6.2.3 Low-Temperature Operation: Performance and Challenges -- 6.2.4 High-Temperature Direct Ethanol Fuel Cells -- 6.3 Direct Propanol Fuel Cells -- 6.4 Direct Ethylene Glycol Fuel Cells -- 6.4.1 Principles of Operation -- 6.4.2 Ethylene Glycol: Anodic Oxidation -- 6.4.3 Cell Performance -- 6.5 Formic Acid Fuel Cells -- 6.5.1 Formic Acid: Anodic Oxidation -- 6.5.2 Cell Performance -- 6.6 Borohydride Fuel Cells -- 6.6.1 Anode Catalysts -- 6.6.2 Challenges -- 6.7 Application of Direct Liquid Fuel Cells -- Further Reading -- Chapter 7 Phosphoric Acid Fuel Cells -- 7.1 High-Temperature Fuel-Cell Systems -- 7.2 System Design -- 7.2.1 Fuel Processing -- 7.2.2 Fuel Utilization -- 7.2.3 Heat-Exchangers -- 7.2.3.1 Designs -- 7.2.3.2 Exergy Analysis -- 7.2.3.3 Pinch Analysis. 
505 8 |a 7.3 Principles of Operation -- 7.3.1 Electrolyte -- 7.3.2 Electrodes and Catalysts -- 7.3.3 Stack Construction -- 7.3.4 Stack Cooling and Manifolding -- 7.4 Performance -- 7.4.1 Operating Pressure -- 7.4.2 Operating Temperature -- 7.4.3 Effects of Fuel and Oxidant Composition -- 7.4.4 Effects of Carbon Monoxide and Sulfur -- 7.5 Technological Developments -- Further Reading -- Chapter 8 Molten Carbonate Fuel Cells -- 8.1 Principles of Operation -- 8.2 Cell Components -- 8.2.1 Electrolyte -- 8.2.2 Anode -- 8.2.3 Cathode -- 8.2.4 Non-Porous Components -- 8.3 Stack Configuration and Sealing -- 8.3.1 Manifolding -- 8.3.2 Internal and External Reforming -- 8.4 Performance -- 8.4.1 Influence of Pressure -- 8.4.2 Influence of Temperature -- 8.5 Practical Systems -- 8.5.1 Fuel Cell Energy (USA) -- 8.5.2 Fuel Cell Energy Solutions (Europe) -- 8.5.3 Facilities in Japan -- 8.5.4 Facilities in South Korea -- 8.6 Future Research and Development -- 8.7 Hydrogen Production and Carbon Dioxide Separation -- 8.8 Direct Carbon Fuel Cell -- Further Reading -- Chapter 9 Solid Oxide Fuel Cells -- 9.1 Principles of Operation -- 9.1.1 High-Temperature (HT) Cells -- 9.1.2 Low-Temperature (IT) Cells -- 9.2 Components -- 9.2.1 Zirconia Electrolyte for HT-Cells -- 9.2.2 Electrolytes for IT-Cells -- 9.2.2.1 Ceria -- 9.2.2.2 Perovskites -- 9.2.2.3 Other Materials -- 9.2.3 Anodes -- 9.2.3.1 Nickel-YSZ -- 9.2.3.2 Cathode -- 9.2.3.3 Mixed Ionic-Electronic Conductor Anode -- 9.2.4 Cathode -- 9.2.5 Interconnect Material -- 9.2.6 Sealing Materials -- 9.3 Practical Design and Stacking Arrangements -- 9.3.1 Tubular Design -- 9.3.2 Planar Design -- 9.4 Performance -- 9.5 Developmental and Commercial Systems -- 9.5.1 Tubular SOFCs -- 9.5.2 Planar SOFCs -- 9.6 Combined-Cycle and Other Systems -- Further Reading -- Chapter 10 Fuels for Fuel Cells -- 10.1 Introduction -- 10.2 Fossil Fuels. 
505 8 |a 10.2.1 Petroleum -- 10.2.2 Petroleum from Tar Sands, Oil Shales and Gas Hydrates -- 10.2.3 Coal and Coal Gases -- 10.2.4 Natural Gas and Coal-Bed Methane (Coal-Seam Gas) -- 10.3 Biofuels -- 10.4 Basics of Fuel Processing -- 10.4.1 Fuel-Cell Requirements -- 10.4.2 Desulfurization -- 10.4.3 Steam Reforming -- 10.4.4 Carbon Formation and Pre-Reforming -- 10.4.5 Internal Reforming -- 10.4.5.1 Indirect Internal Reforming (IIR) -- 10.4.5.2 Direct Internal Reforming (DIR) -- 10.4.6 Direct Hydrocarbon Oxidation -- 10.4.7 Partial Oxidation and Autothermal Reforming -- 10.4.8 Solar-Thermal Reforming -- 10.4.9 Sorbent-Enhanced Reforming -- 10.4.10 Hydrogen Generation by Pyrolysis or Thermal Cracking of Hydrocarbons -- 10.4.11 Further Fuel Processing: Removal of Carbon Monoxide -- 10.5 Membrane Developments for Gas Separation -- 10.5.1 Non-Porous Metal Membranes -- 10.5.2 Non-Porous Ceramic Membranes -- 10.5.3 Porous Membranes -- 10.5.4 Oxygen Separation -- 10.6 Practical Fuel Processing: Stationary Applications -- 10.6.1 Industrial Steam Reforming -- 10.6.2 Fuel-Cell Plants Operating with Steam Reforming of Natural Gas -- 10.6.3 Reformer and Partial Oxidation Designs -- 10.6.3.1 Conventional Packed-Bed Catalytic Reactors -- 10.6.3.2 Compact Reformers -- 10.6.3.3 Plate Reformers and Microchannel Reformers -- 10.6.3.4 Membrane Reactors -- 10.6.3.5 Non-Catalytic Partial Oxidation Reactors -- 10.6.3.6 Catalytic Partial Oxidation Reactors -- 10.7 Practical Fuel Processing: Mobile Applications -- 10.8 Electrolysers -- 10.8.1 Operation of Electrolysers -- 10.8.2 Applications -- 10.8.3 Electrolyser Efficiency -- 10.8.4 Photoelectrochemical Cells -- 10.9 Thermochemical Hydrogen Production and Chemical Looping -- 10.9.1 Thermochemical Cycles -- 10.9.2 Chemical Looping -- 10.10 Biological Production of Hydrogen -- 10.10.1 Introduction. 
520 |a Since publication of the first edition of Fuel Cell Systems Explained, three compelling drivers have supported the continuing development of fuel cell technology. These are: the need to maintain energy security in an energy-hungry world, the desire to move towards zero-emission vehicles and power plants, and the mitigation of climate change by lowering of CO2 emissions. New fuel cell materials, enhanced stack performance and increased lifetimes are leading to the emergence of the first truly commercial systems in applications that range from fork-lift trucks to power sources for mobile phone towers. Leading vehicle manufacturers have embraced the use of electric drive-trains and now see hydrogen fuel cells complementing advanced battery technology in zero-emission vehicles. After many decades of laboratory development, a global but fragile fuel cell industry is bringing the first commercial products to market. This thoroughly revised edition includes several new sections devoted to, for example, fuel cell characterisation, improved materials for low-temperature hydrogen and liquid-fuelled systems, and real-world technology implementation. 
590 |a Knovel  |b ACADEMIC - Electrical & Power Engineering 
590 |a Knovel  |b ACADEMIC - Sustainable Energy & Development 
650 0 |a Fuel cells. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Fuel cells  |2 fast 
700 1 |a Rand, D. A. J.  |q (David Anthony James),  |d 1942-  |e author. 
776 0 8 |i Print version:  |a Dicks, Andrew.  |t Fuel cell systems explained.  |b Third edition.  |d Hoboken, NJ, USA : Wiley, [2018]  |z 9781118613528  |w (DLC) 2017054489 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpFCSEE01P/toc  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5323568 
938 |a EBSCOhost  |b EBSC  |n 1733936 
938 |a YBP Library Services  |b YANK  |n 15224268 
938 |a YBP Library Services  |b YANK  |n 11072413 
994 |a 92  |b IZTAP