Cargando…

Fuzzy logic control in energy systems : with design applications in MATLAB /Simulink /

This book is about fuzzy logic control and its applications in managing, controlling and operating electrical energy systems. It provides a comprehensive overview of fuzzy logic concepts and techniques required for designing fuzzy logic controllers, and then discusses several applications to control...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Altas, Ísmail H. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : The Institution of Engineering and Technology, 2017.
Colección:IET energy engineering series ; 91.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Introduction
  • 1.1. Introduction
  • 1.2. Fuzziness
  • 1.3. Fuzzy membership functions
  • 1.4. Fuzzy sets
  • References
  • 2. Fuzzy sets
  • 2.1. Introduction
  • 2.2. Fuzzy sets and fuzzy membership functions
  • 2.2.1. Triangular membership function
  • 2.2.2. Trapezoid membership function
  • 2.2.3. Gaussian membership function
  • 2.2.4. Bell membership function
  • 2.2.5. Cauchy membership function
  • 2.2.6. Sinusoid membership function
  • 2.2.7. Sigmoid membership function
  • 2.3. Properties of fuzzy membership functions
  • 2.4. Fuzzy set operations
  • 2.4.1. Intersection: t-norm
  • 2.4.2. Union: t-conorm
  • 2.4.3.Complement
  • 2.4.4. De Morgan laws
  • 2.5. Adjustment of fuzziness
  • 2.6. Problems
  • References
  • 3. Fuzzy partitioning
  • 3.1. Introduction
  • 3.2. Theoretical approaches
  • 3.3. Fuzzy partition examples in energy systems
  • 3.4. Problems
  • References
  • 4. Fuzzy relation
  • 4.1. Introduction
  • 4.2. Fuzzy relation
  • 4.3. Operation with fuzzy relations
  • Note continued: 4.3.1. Intersection of two fuzzy relations
  • 4.3.2. Union of two fuzzy relations
  • 4.3.3. Negation of a fuzzy relation
  • 4.3.4. Inverse of a fuzzy relation
  • 4.3.5.Composition of fuzzy relations
  • 4.3.6.Compositional rule of inference
  • 4.3.7. The relational joint
  • 4.4. Binary relations
  • 4.5. The extension principle
  • 4.5.1. The cylindrical extension
  • 4.6. Fuzzy mapping
  • 4.7. Problems
  • References
  • 5. Fuzzy reasoning and fuzzy decision-making
  • 5.1. Introduction
  • 5.2. Fuzzy implications
  • 5.3. Approximate reasoning
  • 5.4. Inference rules of approximate reasoning
  • 5.4.1. Entailment rule of inference
  • 5.4.2. Conjunction rule of inference
  • 5.4.3. Disjunction rule of inference
  • 5.4.4. Negation rule of inference
  • 5.4.5. Projection rule of inference
  • 5.4.6. Generalized modus ponens rule of inference
  • 5.4.7.Compositional rule of inference
  • 5.5. Fuzzy reasoning
  • 5.5.1. Inference engine with single input single rule
  • Note continued: 5.5.2. Inference engine with multiple input single rule
  • 5.5.3. Inference engine with multiple input multiple rule
  • 5.6. Problems
  • References
  • 6. Fuzzy processor
  • 6.1. Introduction
  • 6.2. Mamdani fuzzy reasoning
  • 6.2.1. Fuzzification
  • 6.2.2. Fuzzy rule base
  • 6.2.3. Fuzzy conclusion
  • 6.2.4. Defuzzification
  • 6.3. Takagi-Sugeno fuzzy reasoning
  • 6.4. Tsukamoto fuzzy reasoning
  • 6.5. Problems
  • References
  • 7. Fuzzy logic controller
  • 7.1. Introduction
  • 7.2. Physical system behaviors and control
  • 7.3. Fuzzy processor for control
  • 7.3.1. Fuzzy rules: the modeling of thoughts
  • 7.3.2. The input
  • output interaction
  • 7.4. Modeling the FLC in MATLAB
  • 7.5. Modeling the FLC in Simulink
  • 7.6. Problems
  • References
  • 8. System modeling and control
  • 8.1. Introduction
  • 8.2. System modeling
  • 8.3. Modeling electrical systems
  • 8.4. Modeling mechanical systems
  • 8.4.1. Mechanical systems with linear motion
  • Note continued: 8.4.2. Mechanical systems with rotational motion
  • 8.5. Modeling electromechanical systems
  • 8.5.1. Field subsystem
  • 8.5.2. Armature subsystem
  • 8.5.3. Mechanical subsystem
  • 8.5.4. Electromechanic interaction subsystem
  • 8.5.5. Modeling DC motors
  • 8.5.6. Modeling AC motors
  • 8.6. Problems
  • References
  • 9. FLC in power systems
  • 9.1. Introduction
  • 9.2. Excitation control
  • 9.2.1. Excitation system modeling
  • 9.2.2. State-space model of excitation systems
  • 9.2.3. FLC of excitation systems
  • 9.3. LF control
  • 9.3.1. Small signal modeling of power systems
  • 9.3.2. FLC design for LFC
  • 9.4. FLC in power compensation
  • 9.4.1. Power factor improvement
  • 9.4.2. Bus voltage control
  • 9.5. Problems
  • References
  • 10. FLC in wind energy systems
  • 10.1. Introduction
  • 10.2. Wind turbine
  • 10.3. Electrical generator
  • 10.3.1. Dynamic modeling of induction generator
  • 10.3.2. Self-excited induction generator
  • 10.4. FLC examples in WEC systems
  • Note continued: 10.5. Problems
  • References
  • 11. FLC in PV solar energy systems
  • 11.1. Introduction
  • 11.2. PV cell modelings
  • 11.2.1. Reference I
  • V characteristics of a PV panel
  • 11.2.2. Effects of changes in solar irradiation and temperature
  • 11.2.3. PV panel modeling in Simulink
  • 11.2.4.A PV array emulator
  • 11.3. MPP search in PV arrays
  • 11.3.1. MPP by lookup tables
  • 11.3.2. MPP search algorithm based on measurements of SX and TX
  • 11.3.3. MPP search algorithm based on voltage and current measurements
  • 11.3.4. MPP search algorithm based on online repetitive method
  • 11.4. MPPT of PV arrays
  • 11.4.1. Constant maximum power angle approach
  • 11.4.2. Online load matching approach
  • 11.5. Problems
  • References
  • 12. Energy management and fuzzy decision-making
  • 12.1. Introduction
  • 12.2. Distributed generation and control
  • 12.3. Energy management in a renewable integration system
  • 12.3.1. Centralized control of distributed renewable energy systems
  • Note continued: 12.3.2. Distributed control of renewable energy systems
  • 12.4. Problems
  • References.