|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_on1011250817 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
171111s2017 enka ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d ITD
|d UIU
|d IDEBK
|d OCLCO
|d MERUC
|d OCLCF
|d STF
|d VLB
|d YDX
|d N$T
|d UAB
|d KNOVL
|d CSA
|d EZ9
|d COO
|d OCLCQ
|d OTZ
|d OCLCQ
|d WYU
|d BNG
|d G3B
|d IGB
|d ERL
|d AUW
|d BTN
|d INTCL
|d MHW
|d SNK
|d CUV
|d UKAHL
|d OCLCQ
|d OCL
|d OCLCQ
|d MM9
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1008984718
|a 1012866067
|a 1016970616
|a 1018070097
|a 1021067831
|a 1057434298
|a 1076527900
|a 1171436428
|a 1229062944
|
020 |
|
|
|a 9781785611087
|q (electronic bk.)
|
020 |
|
|
|a 1785611089
|q (electronic bk.)
|
020 |
|
|
|a 9781523112876
|q (electronic bk.)
|
020 |
|
|
|a 1523112875
|q (electronic bk.)
|
020 |
|
|
|z 9781785611070
|q (hardcover)
|
020 |
|
|
|z 1785611070
|q (hardcover)
|
029 |
1 |
|
|a AU@
|b 000061498033
|
029 |
1 |
|
|a AU@
|b 000062591090
|
035 |
|
|
|a (OCoLC)1011250817
|z (OCoLC)1008984718
|z (OCoLC)1012866067
|z (OCoLC)1016970616
|z (OCoLC)1018070097
|z (OCoLC)1021067831
|z (OCoLC)1057434298
|z (OCoLC)1076527900
|z (OCoLC)1171436428
|z (OCoLC)1229062944
|
050 |
|
4 |
|a QA9.64
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
072 |
|
7 |
|a C1340F
|2 inspec
|
072 |
|
7 |
|a C3110E
|2 inspec
|
072 |
|
7 |
|a C3230
|2 inspec
|
072 |
|
7 |
|a C4210
|2 inspec
|
072 |
|
7 |
|a C1230
|2 inspec
|
082 |
0 |
4 |
|a 511.3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Altas, Ísmail H.,
|e author.
|
245 |
1 |
0 |
|a Fuzzy logic control in energy systems :
|b with design applications in MATLAB /Simulink /
|c İsmail H. Altaş.
|
264 |
|
1 |
|a London :
|b The Institution of Engineering and Technology,
|c 2017.
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a IET energy engineering ;
|v 91
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Machine generated contents note: 1. Introduction -- 1.1. Introduction -- 1.2. Fuzziness -- 1.3. Fuzzy membership functions -- 1.4. Fuzzy sets -- References -- 2. Fuzzy sets -- 2.1. Introduction -- 2.2. Fuzzy sets and fuzzy membership functions -- 2.2.1. Triangular membership function -- 2.2.2. Trapezoid membership function -- 2.2.3. Gaussian membership function -- 2.2.4. Bell membership function -- 2.2.5. Cauchy membership function -- 2.2.6. Sinusoid membership function -- 2.2.7. Sigmoid membership function -- 2.3. Properties of fuzzy membership functions -- 2.4. Fuzzy set operations -- 2.4.1. Intersection: t-norm -- 2.4.2. Union: t-conorm -- 2.4.3.Complement -- 2.4.4. De Morgan laws -- 2.5. Adjustment of fuzziness -- 2.6. Problems -- References -- 3. Fuzzy partitioning -- 3.1. Introduction -- 3.2. Theoretical approaches -- 3.3. Fuzzy partition examples in energy systems -- 3.4. Problems -- References -- 4. Fuzzy relation -- 4.1. Introduction -- 4.2. Fuzzy relation -- 4.3. Operation with fuzzy relations
|
505 |
0 |
|
|a Note continued: 4.3.1. Intersection of two fuzzy relations -- 4.3.2. Union of two fuzzy relations -- 4.3.3. Negation of a fuzzy relation -- 4.3.4. Inverse of a fuzzy relation -- 4.3.5.Composition of fuzzy relations -- 4.3.6.Compositional rule of inference -- 4.3.7. The relational joint -- 4.4. Binary relations -- 4.5. The extension principle -- 4.5.1. The cylindrical extension -- 4.6. Fuzzy mapping -- 4.7. Problems -- References -- 5. Fuzzy reasoning and fuzzy decision-making -- 5.1. Introduction -- 5.2. Fuzzy implications -- 5.3. Approximate reasoning -- 5.4. Inference rules of approximate reasoning -- 5.4.1. Entailment rule of inference -- 5.4.2. Conjunction rule of inference -- 5.4.3. Disjunction rule of inference -- 5.4.4. Negation rule of inference -- 5.4.5. Projection rule of inference -- 5.4.6. Generalized modus ponens rule of inference -- 5.4.7.Compositional rule of inference -- 5.5. Fuzzy reasoning -- 5.5.1. Inference engine with single input single rule
|
505 |
0 |
|
|a Note continued: 5.5.2. Inference engine with multiple input single rule -- 5.5.3. Inference engine with multiple input multiple rule -- 5.6. Problems -- References -- 6. Fuzzy processor -- 6.1. Introduction -- 6.2. Mamdani fuzzy reasoning -- 6.2.1. Fuzzification -- 6.2.2. Fuzzy rule base -- 6.2.3. Fuzzy conclusion -- 6.2.4. Defuzzification -- 6.3. Takagi-Sugeno fuzzy reasoning -- 6.4. Tsukamoto fuzzy reasoning -- 6.5. Problems -- References -- 7. Fuzzy logic controller -- 7.1. Introduction -- 7.2. Physical system behaviors and control -- 7.3. Fuzzy processor for control -- 7.3.1. Fuzzy rules: the modeling of thoughts -- 7.3.2. The input -- output interaction -- 7.4. Modeling the FLC in MATLAB -- 7.5. Modeling the FLC in Simulink -- 7.6. Problems -- References -- 8. System modeling and control -- 8.1. Introduction -- 8.2. System modeling -- 8.3. Modeling electrical systems -- 8.4. Modeling mechanical systems -- 8.4.1. Mechanical systems with linear motion
|
505 |
0 |
|
|a Note continued: 8.4.2. Mechanical systems with rotational motion -- 8.5. Modeling electromechanical systems -- 8.5.1. Field subsystem -- 8.5.2. Armature subsystem -- 8.5.3. Mechanical subsystem -- 8.5.4. Electromechanic interaction subsystem -- 8.5.5. Modeling DC motors -- 8.5.6. Modeling AC motors -- 8.6. Problems -- References -- 9. FLC in power systems -- 9.1. Introduction -- 9.2. Excitation control -- 9.2.1. Excitation system modeling -- 9.2.2. State-space model of excitation systems -- 9.2.3. FLC of excitation systems -- 9.3. LF control -- 9.3.1. Small signal modeling of power systems -- 9.3.2. FLC design for LFC -- 9.4. FLC in power compensation -- 9.4.1. Power factor improvement -- 9.4.2. Bus voltage control -- 9.5. Problems -- References -- 10. FLC in wind energy systems -- 10.1. Introduction -- 10.2. Wind turbine -- 10.3. Electrical generator -- 10.3.1. Dynamic modeling of induction generator -- 10.3.2. Self-excited induction generator -- 10.4. FLC examples in WEC systems
|
505 |
0 |
|
|a Note continued: 10.5. Problems -- References -- 11. FLC in PV solar energy systems -- 11.1. Introduction -- 11.2. PV cell modelings -- 11.2.1. Reference I -- V characteristics of a PV panel -- 11.2.2. Effects of changes in solar irradiation and temperature -- 11.2.3. PV panel modeling in Simulink -- 11.2.4.A PV array emulator -- 11.3. MPP search in PV arrays -- 11.3.1. MPP by lookup tables -- 11.3.2. MPP search algorithm based on measurements of SX and TX -- 11.3.3. MPP search algorithm based on voltage and current measurements -- 11.3.4. MPP search algorithm based on online repetitive method -- 11.4. MPPT of PV arrays -- 11.4.1. Constant maximum power angle approach -- 11.4.2. Online load matching approach -- 11.5. Problems -- References -- 12. Energy management and fuzzy decision-making -- 12.1. Introduction -- 12.2. Distributed generation and control -- 12.3. Energy management in a renewable integration system -- 12.3.1. Centralized control of distributed renewable energy systems
|
505 |
0 |
|
|a Note continued: 12.3.2. Distributed control of renewable energy systems -- 12.4. Problems -- References.
|
520 |
|
|
|a This book is about fuzzy logic control and its applications in managing, controlling and operating electrical energy systems. It provides a comprehensive overview of fuzzy logic concepts and techniques required for designing fuzzy logic controllers, and then discusses several applications to control and management in energy systems.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Process Design, Control & Automation
|
590 |
|
|
|a Knovel
|b ACADEMIC - Electrical & Power Engineering
|
630 |
0 |
0 |
|a MATLAB.
|
630 |
0 |
7 |
|a MATLAB
|2 fast
|0 (OCoLC)fst01365096
|
650 |
|
0 |
|a Electric power systems
|x Control.
|
650 |
|
0 |
|a Fuzzy logic.
|
650 |
|
0 |
|a Numerical analysis
|x Computer programs.
|
650 |
|
0 |
|a Fuzzy logic
|v Congresses.
|
650 |
|
6 |
|a Réseaux électriques (Énergie)
|x Régulation.
|
650 |
|
6 |
|a Logique floue.
|
650 |
|
6 |
|a Logique floue
|v Congrès.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Numerical analysis
|x Computer programs.
|2 fast
|0 (OCoLC)fst01041276
|
650 |
|
7 |
|a Electric power systems
|x Control.
|2 fast
|0 (OCoLC)fst00905538
|
650 |
|
7 |
|a Fuzzy logic.
|2 fast
|0 (OCoLC)fst00936807
|
650 |
|
7 |
|a fuzzy control.
|2 inspect
|
650 |
|
7 |
|a power control.
|2 inspect
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 fast
|0 (OCoLC)fst01423772
|
776 |
0 |
8 |
|i Print version:
|a Altaş, İsmail H.
|t Fuzzy logic control in energy systems.
|d London : The Institution of Engineering and Technology, 2017
|z 9781785611070
|w (OCoLC)1014434727
|
830 |
|
0 |
|a IET energy engineering series ;
|v 91.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpFLCESWM1/toc
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH31629883
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5123229
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1623760
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis36902586
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14951112
|
994 |
|
|
|a 92
|b IZTAP
|