Cargando…

Mobile biometrics /

This book is about the use of biometrics on mobile/smart phones. An integrated and informative analysis, this is a timely survey of the state of the art research and developments in this rapidly growing area.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Guo, Guodong (Editor ), Wechsler, Harry, 1948- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Institution of Engineering and Technology, 2017.
Colección:IET security series ; 3.
IET book series on advances in biometrics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Mobile biometrics / Harry Wechsler
  • 1.1. Introduction
  • 1.2. Book organization
  • 1.3. Acknowledgment
  • 2. Mobile biometric device design: history and challenges / Michael Rathwell
  • 2.1. Introduction
  • 2.2. Biometrics
  • 2.3. Fingerprint recognition and the first AFIS system
  • 2.4. Mobile biometric devices
  • 2.5. Features found on good mobile biometrics device design
  • 2.5.1. User friendly, nice styling and ergonomics, light, and rugged
  • 2.5.2. Consistently quick and easy capture of high-quality images
  • 2.5.3. Easy, seamless integration to a back-end biometric system
  • 2.5.4. Quick processing and fast responses
  • 2.5.5. High accuracy, security and privacy
  • 2.6. History of mobile biometric devices
  • 2.6.1. Law enforcement market devices
  • 2.6.2. Commercial/consumer market devices with biometric capabilities
  • 2.7. Future and challenges
  • References
  • 3. Challenges in developing mass-market mobile biometric sensors / Richard K. Fenrich
  • 3.1. Background discussion
  • 3.1.1. Use cases
  • 3.1.2. Biometric sensors
  • 3.1.3. New product development
  • 3.2. primary challenges
  • 3.2.1. Market relevance
  • 3.2.2. Research and development
  • 3.2.3. Manufacturing
  • 3.2.4. Integration
  • 3.2.5. Support
  • 3.2.6. Higher level considerations
  • 3.3. Conclusion
  • References
  • 4. Deep neural networks for mobile person recognition with audio-visual signals / F. Sohel
  • 4.1. Biometric systems
  • 4.1.1. What is biometrics?
  • 4.1.2. Multimodal biometrics
  • 4.2. Audio-visual biometric systems
  • 4.2.1. Preprocessing
  • 4.2.2. Feature extraction
  • 4.2.3. Classification
  • 4.2.4. Fusion
  • 4.2.5. Audio-visual corporation
  • 4.3. Mobile person recognition
  • 4.3.1. Speaker recognition systems
  • 4.3.2. Face recognition systems
  • 4.3.3. Audio-visual person recognition on MOBIO
  • 4.4. Deep neural networks for person recognition
  • 4.4.1. DBN-DNN for unimodal person recognition
  • 4.4.2. DBM-DNN for person recognition
  • 4.5. Summary
  • References
  • 5. Active authentication using facial attributes / Rama Chellappa
  • 5.1. Introduction
  • 5.2. Facial attribute classifiers
  • 5.2.1. Linear attribute classifiers
  • 5.2.2. Convolutional neural network attribute model
  • 5.2.3. Performance of the attribute classifiers
  • 5.3. Authentication
  • 5.3.1. Short-term authentication
  • 5.3.2. Long-term authentication
  • 5.3.3. Discussion
  • 5.4. Platform implementation feasibility
  • 5.4.1. Memory
  • 5.4.2. Computation efficiency and power consumption
  • 5.5. Summary and discussion
  • Acknowledgments
  • References
  • 6. Fusion of shape and texture features for lip biometry in mobile devices / Sambit Bakshi
  • 6.1. Introduction
  • 6.1.1. Evolution of lip as biometric trait
  • 6.1.2. Why lip among other biometric traits?
  • 6.1.3. Biometric authentication for handheld devices
  • 6.1.4. Suitability of lip biometric for handheld devices
  • 6.2. Motivation
  • 6.3. Anatomy of lip biometric system
  • 6.3.1. HMM-based modelling
  • 6.3.2. Training, testing, and inferences through HMM
  • 6.4. Experimental verification and results
  • 6.4.1. Assumptions and constraints in the experiment
  • 6.4.2. Databases used
  • 6.4.3. Parameters of evaluation
  • 6.4.4. Results and analysis
  • 6.5. Conclusions
  • References
  • 7. Mobile device usage data as behavioral biometrics / Aaron D. Striegel
  • 7.1. Introduction
  • 7.2. Biometric system modules
  • 7.3. Data collection
  • 7.4. Feature extraction
  • 7.4.1. Name-based features
  • 7.4.2. Positional features
  • 7.4.3. Touch features
  • 7.4.4. Voice features
  • 7.5. Research approaches
  • 7.5.1. Application traffic
  • 7.5.2. Text
  • 7.5.3. Movement
  • 7.5.4. Touch
  • 7.5.5. Multimodal approaches
  • 7.6. Research challenges
  • 7.7. Summary
  • References
  • 8. Continuous mobile authentication using user-phone interaction / Ioannis A.
  • Kakadiaris
  • 8.1. Introduction
  • 8.2. Previous works
  • 8.2.1. Touch gesture-based mobile authentication
  • 8.2.2. Keystroke-based mobile authentication
  • 8.3. Touch gesture features
  • 8.4. User authentication schema overview
  • 8.5. Dynamic time warping-based method
  • 8.5.1. One nearest neighbor-dynamic time warping
  • 8.5.2. Sequential recognition
  • 8.5.3. Multistage filtering with dynamic template adaptation
  • 8.5.4. Experimental results
  • 8.6. Graphic touch gesture-based method
  • 8.6.1. Feature extraction
  • 8.6.2. Statistical touch dynamics images
  • 8.6.3. User authentication algorithms
  • 8.6.4. Experimental results
  • 8.7. Virtual key typing-based method
  • 8.7.1. Feature extraction
  • 8.7.2. User authentication
  • 8.7.3. Experiment results
  • 8.8. Conclusion
  • Acknowledgments
  • References
  • 9. Smartwatch-based gait biometrics / Andrew Johnston
  • 19.1. Introduction
  • 9.2. Smartwatch hardware
  • 9.3. Biometric tasks: identification and authentication
  • 9.3.1. identification
  • 9.3.2. Authentication
  • 9.4. Data preprocessing
  • 9.4.1. Segmentation
  • 9.4.2. Segment selection
  • 9.5. Selecting a feature set
  • 9.5.1. Statistical features
  • 9.5.2. Histogram-based features
  • 9.5.3. Cycle-based features
  • 9.5.4. Time domain
  • 9.5.5. Summary
  • 9.6. System evaluation and testing
  • 9.6.1. Selecting an evaluation metric
  • 9.6.2. Single-instance evaluation and voting schemes
  • 9.7. Template aging: an implementation challenge
  • 9.8. Conclusion
  • References
  • 10. Toward practical mobile gait biometrics / Yunbin Deng
  • Abstract
  • 10.1. Introduction
  • 10.2. Related work
  • 10.3. GDI gait representation
  • 10.3.1. Gait dynamics images
  • 10.3.2. Pace-compensated gait dynamics images
  • 10.4. Gait identity extraction using i-vectors
  • 10.5. Performance analysis
  • 10.5.1. McGill University naturalistic gait dataset
  • 10.5.2. Osaka University largest gait dataset
  • 10.5.3. Mobile dataset with multiple walking speed
  • 10.6. Conclusions and future work
  • Acknowledgments
  • References
  • 11. 4F["!-ID: mobile four-fingers biometrics system / Hector Hoyos
  • 11.1. Introduction
  • 11.2. Related work
  • 11.2.1. Finger segmentation (ROI localization)
  • 11.2.2. Image preprocessing and enhancement
  • 11.2.3. Feature extraction and matching
  • 11.2.4. System deployment
  • 11.3. 4F["!-ID system
  • 11.3.1. 4F["!-ID image acquisition
  • 11.3.2. 4F["!-ID image segmentation
  • 11.3.3. 4F["!-ID image preprocessing
  • 11.3.4. Feature extraction and matching
  • 11.4. Experimental results
  • 11.5. Summary
  • References
  • 12. Palmprint recognition on mobile devices / Lu Leng
  • 12.1. Background
  • 12.2. Current authentication technologies on mobile devices
  • 12.2.1. Knowledge-authentication
  • 12.2.2. Biometric-authentication
  • 12.3. Mobile palmprint recognition framework
  • 12.3.1. Introduction on palmprint
  • 12.3.2. Strengths of mobile palmprint
  • 12.3.3. Palmprint recognition framework
  • 12.4. Palmprint acquirement modes
  • 12.4.1. Offline mode
  • 12.4.2. Online mode
  • 12.5. Palmprint acquirement and preprocessing
  • 12.5.1. Preprocessing in contact mode
  • 12.5.2. Preprocessing in contactless mode
  • 12.5.3. Acquirement and preprocessing in mobile mode
  • 12.6. Palmprint feature extraction and matching
  • 12.7. Conclusions and development trends
  • Acknowledgments
  • References
  • 13. Addressing the presentation attacks using periocular region for smartphone biometrics / Christoph Busch
  • 13.1. Introduction
  • 13.2. Database
  • 13.2.1. MobiLive 2014 Database
  • 13.2.2. PAVID Database
  • 13.3. Vulnerabilities towards presentation attacks
  • 13.3.1. Vulnerability analysis using the PAVID
  • 13.4. PAD techniques
  • 13.4.1. Metrics for PAD algorithms
  • 13.4.2. Texture features for PAD
  • 13.5. Experiments and results
  • 13.5.1. Results on MoblLive 2014 database
  • 13.5.2. Results on the PAVID database
  • 13.6. Discussions and conclusion
  • Acknowledgments
  • References
  • 14. Countermeasures to face photo spoofing attacks by exploiting structure and texture information from rotated face sequences / Stan Z. Li
  • 14.1. Introduction
  • 14.2. Related works
  • 14.3. Overview of the proposed method
  • 14.4. Sparse 3D facial structure recovery
  • 14.4.1. Initial recovery from two images
  • 14.4.2. Facial structure refinement
  • 14.4.3. Key frame selection
  • 14.5. Face anti-spoofing classification
  • 14.5.1. Structure-based anti-spoofing classifier
  • 14.5.2. Texture-based anti-spoofing classifier
  • 14.6. Experiments
  • 14.6.1. Database description
  • 14.6.2. Evaluation protocols
  • 14.6.3. Results of structure-based method
  • 14.6.4. Results of texture-based method
  • 14.6.5. Combination of structure and texture clues
  • 14.6.6. Computational cost analysis
  • 14.7. Conclusion
  • References
  • 15. Biometric antispoofing on mobile devices / Gian Luca Foresti
  • 15.1. Introduction
  • 15.2. Biometric antispoofing
  • 15.2.1. State-of-the-art in face antispoofing
  • 15.2.2. State-of-the-art in fingerprint antispoofing
  • 15.2.3. State-of-the-art in iris antispoofing
  • 15.3. Case study: MoBio_LivDet system
  • 15.3.1. Experiments
  • 15.4. Research opportunities
  • 15.4.1. Mobile liveness detection
  • 15.4.2. Mobile biometric spoofing databases
  • 15.4.3. Generalization to unknown attacks
  • 15.4.4. Randomizing input biometric data.
  • Note continued: 15.4.5. Fusion of biometric system and countermeasures
  • 15.5. Conclusion
  • References
  • 16. Biometric open protocol standard / Hector Hoyos
  • 16.1. Introduction
  • 16.2. Overview
  • 16.2.1. Scope
  • 16.2.2. Purpose
  • 16.2.3. Intended audience
  • 16.3. Definitions, acronyms, and abbreviations
  • 16.3.1. Definitions
  • 16.3.2. Acronyms and abbreviations
  • 16.4. Conformance
  • 16.5. Security considerations
  • 16.5.1. Background
  • 16.5.2. Genesis
  • 16.5.3. Enrollment
  • 16.5.4. Matching agreement
  • 16.5.5. Role gathering
  • 16.5.6. Access control
  • 16.5.7. Auditing and assurance
  • 16.6. BOPS interoperability
  • 16.6.1. Application
  • 16.6.2. Registration
  • 16.6.3. Prevention of replay
  • 16.7. Summary
  • Further Reading
  • 17. Big data and cloud identity service for mobile authentication / Nalini K. Ratha
  • 17.1. Introduction
  • 17.1.1. Identity establishment and management
  • 17.1.2. Mega trend impacts
  • 17.1.3. Large-scale biometric applications and big data
  • 17.1.4. Cloud computing
  • 17.2. Characteristics of mobile biometrics
  • 17.2.1. Mobile biometric concepts
  • 17.2.2. Mobile biometric data
  • 17.2.3. Biometric processes and performance metrics
  • 17.3. Smart mobile devices
  • 17.3.1. Many mobile sensors available
  • 17.3.2. Multibiometrics fusion
  • 17.4. Emerging mobile biometrics techniques
  • 17.4.1. Traditional biometrics
  • fingerprint, face, and iris
  • 17.4.2. Behavior biometrics
  • 17.4.3. Risk-based continuous authentication and trust management
  • 17.5. Conceptual mobile application architecture
  • 17.6. Biometric identity services in the cloud
  • 17.6.1. Biometrics-enabled identity services
  • 17.6.2. Biometric identity service cloud model
  • 17.6.3. How to develop a biometrics-identity-service-cloud model?
  • 17.7. Cognitive authentication system: a point of view
  • 17.8. Conclusions
  • References
  • 18. Outlook for mobile biometrics / Harry Wechsler.