Mobile biometrics /
This book is about the use of biometrics on mobile/smart phones. An integrated and informative analysis, this is a timely survey of the state of the art research and developments in this rapidly growing area.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Institution of Engineering and Technology,
2017.
|
Colección: | IET security series ;
3. IET book series on advances in biometrics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Mobile biometrics / Harry Wechsler
- 1.1. Introduction
- 1.2. Book organization
- 1.3. Acknowledgment
- 2. Mobile biometric device design: history and challenges / Michael Rathwell
- 2.1. Introduction
- 2.2. Biometrics
- 2.3. Fingerprint recognition and the first AFIS system
- 2.4. Mobile biometric devices
- 2.5. Features found on good mobile biometrics device design
- 2.5.1. User friendly, nice styling and ergonomics, light, and rugged
- 2.5.2. Consistently quick and easy capture of high-quality images
- 2.5.3. Easy, seamless integration to a back-end biometric system
- 2.5.4. Quick processing and fast responses
- 2.5.5. High accuracy, security and privacy
- 2.6. History of mobile biometric devices
- 2.6.1. Law enforcement market devices
- 2.6.2. Commercial/consumer market devices with biometric capabilities
- 2.7. Future and challenges
- References
- 3. Challenges in developing mass-market mobile biometric sensors / Richard K. Fenrich
- 3.1. Background discussion
- 3.1.1. Use cases
- 3.1.2. Biometric sensors
- 3.1.3. New product development
- 3.2. primary challenges
- 3.2.1. Market relevance
- 3.2.2. Research and development
- 3.2.3. Manufacturing
- 3.2.4. Integration
- 3.2.5. Support
- 3.2.6. Higher level considerations
- 3.3. Conclusion
- References
- 4. Deep neural networks for mobile person recognition with audio-visual signals / F. Sohel
- 4.1. Biometric systems
- 4.1.1. What is biometrics?
- 4.1.2. Multimodal biometrics
- 4.2. Audio-visual biometric systems
- 4.2.1. Preprocessing
- 4.2.2. Feature extraction
- 4.2.3. Classification
- 4.2.4. Fusion
- 4.2.5. Audio-visual corporation
- 4.3. Mobile person recognition
- 4.3.1. Speaker recognition systems
- 4.3.2. Face recognition systems
- 4.3.3. Audio-visual person recognition on MOBIO
- 4.4. Deep neural networks for person recognition
- 4.4.1. DBN-DNN for unimodal person recognition
- 4.4.2. DBM-DNN for person recognition
- 4.5. Summary
- References
- 5. Active authentication using facial attributes / Rama Chellappa
- 5.1. Introduction
- 5.2. Facial attribute classifiers
- 5.2.1. Linear attribute classifiers
- 5.2.2. Convolutional neural network attribute model
- 5.2.3. Performance of the attribute classifiers
- 5.3. Authentication
- 5.3.1. Short-term authentication
- 5.3.2. Long-term authentication
- 5.3.3. Discussion
- 5.4. Platform implementation feasibility
- 5.4.1. Memory
- 5.4.2. Computation efficiency and power consumption
- 5.5. Summary and discussion
- Acknowledgments
- References
- 6. Fusion of shape and texture features for lip biometry in mobile devices / Sambit Bakshi
- 6.1. Introduction
- 6.1.1. Evolution of lip as biometric trait
- 6.1.2. Why lip among other biometric traits?
- 6.1.3. Biometric authentication for handheld devices
- 6.1.4. Suitability of lip biometric for handheld devices
- 6.2. Motivation
- 6.3. Anatomy of lip biometric system
- 6.3.1. HMM-based modelling
- 6.3.2. Training, testing, and inferences through HMM
- 6.4. Experimental verification and results
- 6.4.1. Assumptions and constraints in the experiment
- 6.4.2. Databases used
- 6.4.3. Parameters of evaluation
- 6.4.4. Results and analysis
- 6.5. Conclusions
- References
- 7. Mobile device usage data as behavioral biometrics / Aaron D. Striegel
- 7.1. Introduction
- 7.2. Biometric system modules
- 7.3. Data collection
- 7.4. Feature extraction
- 7.4.1. Name-based features
- 7.4.2. Positional features
- 7.4.3. Touch features
- 7.4.4. Voice features
- 7.5. Research approaches
- 7.5.1. Application traffic
- 7.5.2. Text
- 7.5.3. Movement
- 7.5.4. Touch
- 7.5.5. Multimodal approaches
- 7.6. Research challenges
- 7.7. Summary
- References
- 8. Continuous mobile authentication using user-phone interaction / Ioannis A.
- Kakadiaris
- 8.1. Introduction
- 8.2. Previous works
- 8.2.1. Touch gesture-based mobile authentication
- 8.2.2. Keystroke-based mobile authentication
- 8.3. Touch gesture features
- 8.4. User authentication schema overview
- 8.5. Dynamic time warping-based method
- 8.5.1. One nearest neighbor-dynamic time warping
- 8.5.2. Sequential recognition
- 8.5.3. Multistage filtering with dynamic template adaptation
- 8.5.4. Experimental results
- 8.6. Graphic touch gesture-based method
- 8.6.1. Feature extraction
- 8.6.2. Statistical touch dynamics images
- 8.6.3. User authentication algorithms
- 8.6.4. Experimental results
- 8.7. Virtual key typing-based method
- 8.7.1. Feature extraction
- 8.7.2. User authentication
- 8.7.3. Experiment results
- 8.8. Conclusion
- Acknowledgments
- References
- 9. Smartwatch-based gait biometrics / Andrew Johnston
- 19.1. Introduction
- 9.2. Smartwatch hardware
- 9.3. Biometric tasks: identification and authentication
- 9.3.1. identification
- 9.3.2. Authentication
- 9.4. Data preprocessing
- 9.4.1. Segmentation
- 9.4.2. Segment selection
- 9.5. Selecting a feature set
- 9.5.1. Statistical features
- 9.5.2. Histogram-based features
- 9.5.3. Cycle-based features
- 9.5.4. Time domain
- 9.5.5. Summary
- 9.6. System evaluation and testing
- 9.6.1. Selecting an evaluation metric
- 9.6.2. Single-instance evaluation and voting schemes
- 9.7. Template aging: an implementation challenge
- 9.8. Conclusion
- References
- 10. Toward practical mobile gait biometrics / Yunbin Deng
- Abstract
- 10.1. Introduction
- 10.2. Related work
- 10.3. GDI gait representation
- 10.3.1. Gait dynamics images
- 10.3.2. Pace-compensated gait dynamics images
- 10.4. Gait identity extraction using i-vectors
- 10.5. Performance analysis
- 10.5.1. McGill University naturalistic gait dataset
- 10.5.2. Osaka University largest gait dataset
- 10.5.3. Mobile dataset with multiple walking speed
- 10.6. Conclusions and future work
- Acknowledgments
- References
- 11. 4F["!-ID: mobile four-fingers biometrics system / Hector Hoyos
- 11.1. Introduction
- 11.2. Related work
- 11.2.1. Finger segmentation (ROI localization)
- 11.2.2. Image preprocessing and enhancement
- 11.2.3. Feature extraction and matching
- 11.2.4. System deployment
- 11.3. 4F["!-ID system
- 11.3.1. 4F["!-ID image acquisition
- 11.3.2. 4F["!-ID image segmentation
- 11.3.3. 4F["!-ID image preprocessing
- 11.3.4. Feature extraction and matching
- 11.4. Experimental results
- 11.5. Summary
- References
- 12. Palmprint recognition on mobile devices / Lu Leng
- 12.1. Background
- 12.2. Current authentication technologies on mobile devices
- 12.2.1. Knowledge-authentication
- 12.2.2. Biometric-authentication
- 12.3. Mobile palmprint recognition framework
- 12.3.1. Introduction on palmprint
- 12.3.2. Strengths of mobile palmprint
- 12.3.3. Palmprint recognition framework
- 12.4. Palmprint acquirement modes
- 12.4.1. Offline mode
- 12.4.2. Online mode
- 12.5. Palmprint acquirement and preprocessing
- 12.5.1. Preprocessing in contact mode
- 12.5.2. Preprocessing in contactless mode
- 12.5.3. Acquirement and preprocessing in mobile mode
- 12.6. Palmprint feature extraction and matching
- 12.7. Conclusions and development trends
- Acknowledgments
- References
- 13. Addressing the presentation attacks using periocular region for smartphone biometrics / Christoph Busch
- 13.1. Introduction
- 13.2. Database
- 13.2.1. MobiLive 2014 Database
- 13.2.2. PAVID Database
- 13.3. Vulnerabilities towards presentation attacks
- 13.3.1. Vulnerability analysis using the PAVID
- 13.4. PAD techniques
- 13.4.1. Metrics for PAD algorithms
- 13.4.2. Texture features for PAD
- 13.5. Experiments and results
- 13.5.1. Results on MoblLive 2014 database
- 13.5.2. Results on the PAVID database
- 13.6. Discussions and conclusion
- Acknowledgments
- References
- 14. Countermeasures to face photo spoofing attacks by exploiting structure and texture information from rotated face sequences / Stan Z. Li
- 14.1. Introduction
- 14.2. Related works
- 14.3. Overview of the proposed method
- 14.4. Sparse 3D facial structure recovery
- 14.4.1. Initial recovery from two images
- 14.4.2. Facial structure refinement
- 14.4.3. Key frame selection
- 14.5. Face anti-spoofing classification
- 14.5.1. Structure-based anti-spoofing classifier
- 14.5.2. Texture-based anti-spoofing classifier
- 14.6. Experiments
- 14.6.1. Database description
- 14.6.2. Evaluation protocols
- 14.6.3. Results of structure-based method
- 14.6.4. Results of texture-based method
- 14.6.5. Combination of structure and texture clues
- 14.6.6. Computational cost analysis
- 14.7. Conclusion
- References
- 15. Biometric antispoofing on mobile devices / Gian Luca Foresti
- 15.1. Introduction
- 15.2. Biometric antispoofing
- 15.2.1. State-of-the-art in face antispoofing
- 15.2.2. State-of-the-art in fingerprint antispoofing
- 15.2.3. State-of-the-art in iris antispoofing
- 15.3. Case study: MoBio_LivDet system
- 15.3.1. Experiments
- 15.4. Research opportunities
- 15.4.1. Mobile liveness detection
- 15.4.2. Mobile biometric spoofing databases
- 15.4.3. Generalization to unknown attacks
- 15.4.4. Randomizing input biometric data.
- Note continued: 15.4.5. Fusion of biometric system and countermeasures
- 15.5. Conclusion
- References
- 16. Biometric open protocol standard / Hector Hoyos
- 16.1. Introduction
- 16.2. Overview
- 16.2.1. Scope
- 16.2.2. Purpose
- 16.2.3. Intended audience
- 16.3. Definitions, acronyms, and abbreviations
- 16.3.1. Definitions
- 16.3.2. Acronyms and abbreviations
- 16.4. Conformance
- 16.5. Security considerations
- 16.5.1. Background
- 16.5.2. Genesis
- 16.5.3. Enrollment
- 16.5.4. Matching agreement
- 16.5.5. Role gathering
- 16.5.6. Access control
- 16.5.7. Auditing and assurance
- 16.6. BOPS interoperability
- 16.6.1. Application
- 16.6.2. Registration
- 16.6.3. Prevention of replay
- 16.7. Summary
- Further Reading
- 17. Big data and cloud identity service for mobile authentication / Nalini K. Ratha
- 17.1. Introduction
- 17.1.1. Identity establishment and management
- 17.1.2. Mega trend impacts
- 17.1.3. Large-scale biometric applications and big data
- 17.1.4. Cloud computing
- 17.2. Characteristics of mobile biometrics
- 17.2.1. Mobile biometric concepts
- 17.2.2. Mobile biometric data
- 17.2.3. Biometric processes and performance metrics
- 17.3. Smart mobile devices
- 17.3.1. Many mobile sensors available
- 17.3.2. Multibiometrics fusion
- 17.4. Emerging mobile biometrics techniques
- 17.4.1. Traditional biometrics
- fingerprint, face, and iris
- 17.4.2. Behavior biometrics
- 17.4.3. Risk-based continuous authentication and trust management
- 17.5. Conceptual mobile application architecture
- 17.6. Biometric identity services in the cloud
- 17.6.1. Biometrics-enabled identity services
- 17.6.2. Biometric identity service cloud model
- 17.6.3. How to develop a biometrics-identity-service-cloud model?
- 17.7. Cognitive authentication system: a point of view
- 17.8. Conclusions
- References
- 18. Outlook for mobile biometrics / Harry Wechsler.