Cargando…

Machine learning algorithms : reference guide for popular algorithms for data science and machine learning /

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bonaccorso, Giuseppe (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1001347178
003 OCoLC
005 20231027140348.0
006 m o d
007 cr unu||||||||
008 170818s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d N$T  |d IDEBK  |d OCLCF  |d TOH  |d STF  |d KNOVL  |d NLE  |d TEFOD  |d COO  |d UOK  |d CEF  |d KSU  |d UKMGB  |d WYU  |d C6I  |d UAB  |d UKAHL  |d N$T  |d OCLCQ  |d CZL  |d AU@  |d OCLCO  |d OCLCQ 
015 |a GBB824774  |2 bnb 
016 7 |a 018470876  |2 Uk 
019 |a 1097137302 
020 |a 9781785884511  |q (electronic bk.) 
020 |a 1785884514  |q (electronic bk.) 
020 |a 9781523112210  |q (electronic bk.) 
020 |a 1523112212  |q (electronic bk.) 
020 |z 9781785889622 
029 1 |a GBVCP  |b 1004862962 
029 1 |a UKMGB  |b 018470876 
035 |a (OCoLC)1001347178  |z (OCoLC)1097137302 
037 |a CL0500000885  |b Safari Books Online 
037 |a 15C25172-AD65-4223-A9FA-F9558FA8D811  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Bonaccorso, Giuseppe,  |e author. 
245 1 0 |a Machine learning algorithms :  |b reference guide for popular algorithms for data science and machine learning /  |c Giuseppe Bonaccorso. 
246 3 0 |a Reference guide for popular algorithms for data science and machine learning 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed August 17, 2017). 
520 |a Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will... 
504 |a Includes bibliographical references at the end of each chapters and index. 
590 |a Knovel  |b ACADEMIC - Software Engineering 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Computer algorithms. 
650 2 |a Algorithms 
650 6 |a Apprentissage automatique. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a COMPUTERS  |x Programming  |x Algorithms.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |a Bonaccorso, Giuseppe.  |t Machine learning algorithms : reference guide for popular algorithms for data science and machine learning.  |d Birmingham, England ; Mumbai, India : Packt Publishing, 2017  |z 9781785889622 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpMLA00001/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0034968406 
938 |a EBSCOhost  |b EBSC  |n 1562685 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38550900 
994 |a 92  |b IZTAP