Cognitive radio engineering /
A cognitive radio is a transceiver which is aware of its environment, its own technical capabilities and limitations, and those of the radios with which it may communicate; is capable of acting on that awareness and past experience to configure itself in a way that optimizes its performance; and is...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Edison, NJ :
SciTech Publishing, an imprint of the IET,
2016.
|
Colección: | Mario Boella series on electromagnetism in information & communication.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note:
- 1. Introduction
- 1.1. What Is a Cognitive Radio and Why Is It Needed
- 1.2. Book Coverage and Philosophy
- 1.3. Origin of Cognitive Radio
- 1.4. Overview of Cognitive Radio Operation
- 1.5. Illustrative Example of Cognitive Radio Application: Dynamic Spectrum Access in the Broadcast Television Bands
- 1.5.1. Introduction
- 1.5.2. Identifying Frequencies for Cognitive Radio Operation: TV Channel Occupancy in the United States
- 1.5.3. FCC Rules and Commercial Standards for Unlicensed Television Band Devices (TVBDs)
- 1.5.4. FCC Rule Implementation by the IEEE 802.11af Standard
- 1.5.5. TV White Space Databases
- 1.5.6. Standard ECMA-392
- 1.5.7. Cognitive Radio Design for U.S. TV White Space
- 1.6. Can a Radio Really Be Cognitive
- 2. Cognitive Engine Design
- 2.1. Introduction
- 2.2. Basic Function of a Cognitive Engine
- 2.3. Cognitive Engine Organization
- 2.3.1. Optimizer
- 2.3.2. Objective Analyzer
- 2.3.3. Ranker
- 2.3.4. Knowledge Base
- 2.3.5. Radio Interface
- 2.3.6. Sensor
- 2.3.7. User Interface
- 2.3.8. Controller
- 2.4. Tools and Techniques for CE Component Design
- 2.4.1. Machine Learning
- 2.4.2. Optimizers
- 2.4.3. Estimation
- 2.4.4. Sensing
- 2.5. Cognitive Engine Architecture
- 2.5.1. Broad Considerations
- 2.5.2. Monolithic Versus Distributed
- 2.5.3. Standards
- 2.5.4. Original CE Architecture
- 2.5.5. CSERE Architecture
- 2.6. Information Flow in Cognitive Engines
- 2.6.1. Example Use of Uncertainty Coefficient
- 2.7. Conclusion
- 3. RF Platforms for Cognitive Radio
- 3.1. Introduction
- 3.2. Preliminary Considerations in Choosing an RF Platform
- 3.3. RF Architectures
- 3.3.1. Receivers
- 3.3.2. Transmitter
- 3.4. Receiver RF Specifications
- 3.4.1. Introduction
- 3.4.2. Noise, Noise Performance, and Weak Signal Behavior
- 3.4.3. Strong Signal Behavior
- 3.5. Transmitter RF Specifications
- 3.6. MAC and Performance Considerations
- 3.7. Radio Frequency Integrated Circuits
- 3.7.1. Introduction
- 3.7.2. Example: RFM69CW
- 3.7.3. Computational Support for RFICs
- 3.8. Platforms for Software Defined Radio
- 3.8.1. Introduction
- 3.8.2. Packaged RF Front Ends and All-in-one Platforms
- 3.9. Conclusion
- 4. Cognitive Radio Computation and Computational Platforms
- 4.1. Role of Computing and Cognitive Radio Architecture
- 4.2. Control Flow and Data Flow Computer Architectures
- 4.2.1. Control Flow Computing
- 4.2.2. Data Flow Computing
- 4.3. Overview of Computational Devices (GPP, DSP, FPGA)
- 4.3.1. Digital Signal Processors
- 4.3.2. General Purpose Processors
- 4.3.3. Field-programmable Gate Arrays
- 4.3.4. Alternative Computational Devices
- 4.3.5. Computational Heterogeneity
- 4.4. Models of Computation
- 4.4.1. Reactive and Real-time Systems
- 4.4.2. Data Flow Models of Computation
- 4.4.3. Process Algebra
- 4.4.4. Calculus of Communicating Systems and (SS (B-calculus
- 4.5. Models-of-Computation Use
- 4.6. Conclusion
- 5. Integrating and Programming RF and Computational Platforms for Cognitive Radio
- 5.1. SDR Platforms
- 5.2. Choosing a Platform
- 5.2.1. Choosing Between RF Alternatives
- 5.2.2. Processor Choices
- 5.2.3. Benchmarks
- 5.2.4. Processor Interconnect
- 5.2.5. Other Considerations
- 5.3. Programming
- 5.3.1. Classic Approach
- 5.3.2. Model-Based Design
- 5.3.3. Application of Models-of-Computation
- 5.4. Concluding Remarks
- 6. Cognitive Radio Evaluation
- 6.1. Introduction
- 6.2. Performance Evaluation Principles
- 6.3. Metrics and Factors for Cognitive Radio Evaluation
- 6.3.1. Purpose
- 6.3.2. Language
- 6.3.3. Actions
- 6.4. Practical Evaluation Methods
- 6.4.1. Setup
- 6.4.2. Logging
- 6.4.3. Encoding
- 6.4.4. Interpolation
- 6.4.5. Alternative Approaches to Evaluation
- 6.5. Example Evaluation
- 6.5.1. Setup Phase
- 6.5.2. Logging Phase
- 6.5.3. Encoding Phase
- 6.5.4. Interpolation
- 6.6. Example Code
- 6.6.1. Free FEC Cognitive Radio
- 6.6.2. Fixed FEC Cognitive Radio
- 6.6.3. Interpolation Code
- 6.7. Conclusion
- 7. Cognitive Radio Design for Networking
- 7.1. Networks of Cognitive Radios Versus Cognitive Networks
- 7.2. Cognitive Network Goals
- 7.3. Interaction Methods for Cognitive Radios
- 7.3.1. Social Language
- 7.4. Components of Interaction
- 7.4.1. Observability
- 7.4.2. Understanding
- 7.5. Analyzing Interactions
- 7.5.1. Example Analysis
- 7.5.2. Analysis Results
- 7.6. Group Learning
- 7.7. Building a Cognitive Network with Social Language
- 7.7.1. MAC Layer Considerations
- 7.7.2. Behavior-based Design and Social Language
- 7.7.3. Tasks and Behaviors
- 7.7.4. Hardware Considerations and Implementation
- 7.7.5. Implementing Behaviors in Software and Hardware
- 7.7.6. Network Evaluation
- 7.7.7. Entry Scenario
- 7.7.8. Social Learning
- 7.7.9. Total System Behavior
- 8. Cognitive Radio Applications
- 8.1. Introduction
- 8.2. Zoned Dynamic Spectrum Access
- 8.3. Cognitive WiFi and LTE Operation in TV White Space Spectrum
- 8.3.1. WiFi Frequency Translators
- 8.3.2. LTE Frequency Converters
- 8.4. LTE Cognitive Repeaters for Indoor Applications
- 8.5. Cognitive Radio and Cognitive Radar: Communications and Radar System Coexistence
- 8.5.1. Cognitive Radar
- 8.5.2. Legacy Radar and Communications System Coexistence
- 8.6. Ka Band Geostationary Satellite Applications
- 8.6.1. Introduction
- 8.7. Public Safety and Emergency First Responder Communication
- 8.7.1. Introduction
- 8.7.2. Virginia Tech Public Safety Cognitive Radio
- 8.7.3. Current (2016) Situation
- 8.8. Cognitive Radio and Autonomous Vehicles
- 8.9. Smart Grids.