Smarter energy : from smart metering to the smart grid /
This book presents cutting-edge perspectives and research results in smart energy spanning multiple disciplines across four main topics: smart metering, smart grid modeling, control and optimisation, and smart grid communications and networking.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
The Institution of Engineering and Technology,
2016.
|
Colección: | IET power and energy series ;
88. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Smart energy
- smart grid research and projects overview / Hongjian Sun
- 1.1. Smart Grid
- 1.1.1. Introduction
- 1.1.2. Smart metering and data privacy
- 1.1.3. Smart grid communications, networking and security
- 1.1.4. Smart grid modelling, control and optimization
- 1.2. Smart grid research: mapping of ongoing activities
- 1.2.1. Europe
- 1.2.2. United States of America
- 1.2.3. Asia-Pacific
- 1.3. Smart grid research in Europe: what comes next?
- 1.4. SmarterEMC2 project
- 1.4.1. Stakeholders involved in SmarterEMC2
- 1.4.2. Conceptual architecture of the SmarterEMC2 ICT ecosystem
- Acknowledgements
- Bibliography
- pt. I Smart metering
- 2. Privacy-preserving data aggregation in smart metering systems / Fabio Borges
- 2.1. Introduction
- 2.2. Definitions
- 2.2.1. List of acronyms
- 2.2.2. List of symbols
- 2.3. Background
- 2.4. State-of-the-art protocols
- 2.4.1. Homomorphic encryption
- 2.4.2. Commitments
- 2.4.3. Symmetric DC-Net (SDC-Net)
- 2.4.4. Asymmetric DC-Net (ADC-Net)
- 2.5. improved ADC-Net
- 2.6. Comparison with related work
- 2.6.1. Privacy
- 2.6.2. Communication
- 2.6.3. Processing time
- 2.6.4. Techniques
- 2.7. Simulations
- 2.7.1. Real-world data set
- 2.7.2. Software and hardware
- 2.7.3. Simulation parameters
- 2.7.4. Simulation results
- 2.8. Conclusions
- Acknowledgements
- Bibliography
- 3. Smart price-based scheduling of flexible residential appliances / Goran Strbac
- Nomenclature
- 3.1. Introduction
- 3.1.1. Context
- emerging challenges for low-carbon electrical power systems
- 3.1.2. Role of residential demand in addressing emerging challenges
- 3.1.3. Challenges in scheduling residential appliances
- 3.1.4. Overview of alternative approaches for smart scheduling of residential appliances
- 3.2. Modelling operation and price response of flexible residential appliances
- 3.2.1. Appliances with continuously adjustable power levels
- EV with smart charging capability
- 3.2.2. Appliances with shiftable cycles
- WA with delay functionality
- 3.3. Measures against demand response concentration
- 3.3.1. Flexibility restriction
- 3.3.2. Non-linear pricing
- 3.3.3. Randomised pricing
- 3.3.4. Tuning the parameters of smart measures
- 3.4. Case studies
- 3.4.1. Scheduling of flexible residential appliances in electricity markets
- 3.4.2. Scheduling of flexible residential appliances for management of local distribution networks
- 3.5. Conclusions and future work
- Bibliography
- 4. Smart tariffs for demand response from smart metering platform / Furong Li
- 4.1. Introduction
- 4.2. Electricity tariff review
- 4.2.1. Current energy tariff products
- 4.2.2. Variable electricity tariffs
- 4.3. Variable ToU tariff design
- 4.3.1. Introduction
- 4.3.2. Rationale of proposed tariff design
- 4.3.3. ToU tariff design by equal interval grouping
- 4.3.4. ToU tariff development by hierarchical clustering
- 4.4. Results and discussion
- 4.4.1. Results of RTP tariffs
- 4.4.2. ToU tariffs by equal interval grouping
- 4.4.3. ToU tariffs by hierarchical clustering
- 4.5. Impact analysis of ToU tariffs
- 4.5.1. Flexible load modelling
- 4.5.2. Impact analysis of designed ToU tariffs
- 4.5.3. Benefit quantification
- 4.5.4. Cooperation with energy storage
- 4.5.5. Case study
- 4.6. Impact of networks on tariff design
- 4.6.1. Quantification of DSR on network investment
- 4.6.2. Tariff design in response to network conditions
- 4.7. Discussion and conclusion
- 4.7.1. Discussion
- 4.7.2. Conclusion
- Bibliography
- pt. II Smart grid modeling, control and optimization
- 5. Decentralized models for real-time renewable integration in future grid / Kiyoshi Nakayama
- 5.1. Introduction to future smart grid
- 5.2. Hybrid model of centralized resource management and decentralized grid control
- 5.2.1. Centralized resource management
- 5.2.2. Decentralized grid control
- 5.3. Graph modeling
- 5.4. Maximizing real-time renewable integration
- 5.5. General decentralized approaches
- 5.6. Distributed nodal approach
- 5.6.1. Initialize
- 5.6.2. Send
- 5.6.3. Receive
- 5.6.4. Compare
- 5.6.5. Optimize
- 5.6.6. Notify
- 5.6.7. Confirm
- 5.6.8. StandBy
- 5.7. Distributed clustering approach
- 5.7.1. Tie-set graph theory and its application to distributed systems
- 5.7.2. Tie-set Based Optimization Algorithm
- 5.8. Case study of decentralized grid control
- 5.9. Simulation and experiments
- 5.9.1. Energy stimulus response
- 5.9.2. Convergence with different renewable penetration rates
- 5.9.3. Comparison of TBO and DLP
- 5.10. Summary
- Bibliography
- 6. Distributed and decentralized control in future power systems / Chris Dent
- 6.1. Introduction
- 6.2. look into current power systems control
- 6.3. Identifying the role of distributed methods
- 6.4. Distributed optimization definitions and scope
- 6.4.1. Distributed optimization fundamentals
- 6.4.2. Simple price-based decomposition
- 6.4.3. From optimization to control using prices
- 6.4.4. Making prices work
- 6.5. Decomposition methods
- 6.5.1. Improving price-updates
- 6.5.2. Decomposing an augmented Lagrangian
- 6.5.3. Proximal decomposition methods
- 6.5.4. Optimality Condition Decomposition
- 6.5.5. On other distributed methods
- 6.6. OPF insights
- 6.6.1. Decomposition structure considerations
- 6.6.2. Practical application considerations
- 6.7. UC time frame
- 6.8. ED time frame
- 6.9. Closer to real time
- 6.10. Conclusions
- Bibliography
- 7. Multiobjective optimization for smart grid system design / Wei-Yu Chiu
- 7.1. Introduction
- 7.2. Problem formulation
- 7.2.1. Model of MOP
- 7.2.2. Design examples
- 7.3. Solution methods
- 7.4. Numerical results
- 7.5. Conclusion
- Acknowledgments
- Bibliography
- 8. Frequency regulation of smart grid via dynamic demand control and battery energy storage system / Lin Jiang
- 8.1. Introduction
- 8.2. Dynamic model of smart grid for frequency regulation
- 8.2.1. Structure of frequency regulation
- 8.2.2. Wind farm with variable-speed wind turbines
- 8.2.3. Battery energy storage system
- 8.2.4. Plug-in electric vehicles
- 8.2.5. Controllable air conditioner based DDC
- 8.2.6. State-space model of closed-loop LFC scheme
- 8.3. Delay-dependent stability analysis
- 8.3.1. Delay-dependent stability criterion
- 8.3.2. Delay margin calculation
- 8.4. Delay-dependent robust controller design
- 8.4.1. Delay-dependent performance analysis
- 8.4.2. Controller gain tuning based on the PSO algorithm
- 8.5. Case studies
- 8.5.1. Robust controller design
- 8.5.2. Contribution of the DDC, BESS, and PEV to frequency regulation
- 8.5.3. Robustness against to load disturbances
- 8.5.4. Robustness against to parameters uncertainties
- 8.5.5. Robustness against to time delays
- 8.6. Conclusion
- Bibliography
- 9. Distributed frequency control and demand-side management / I.
- Lestas
- 9.1. Introduction
- 9.1.1. Frequency control in the power grid
- 9.1.2. Optimality in frequency control
- 9.1.3. Demand-side management
- 9.2. Swing equation dynamics
- 9.3. Primary frequency control
- 9.3.1. Historical development
- 9.3.2. Passivity conditions for stability analysis
- 9.3.3. Economic optimality and fairness in primary control
- 9.3.4. Supply passivity framework for demand-side integration
- 9.4. Secondary frequency control
- 9.4.1. Historical development
- 9.4.2. Economic optimality and fairness in secondary control
- 9.4.3. Stability guarantees via a dissipativity framework
- 9.5. Future challenges
- Bibliography
- 10. Game theory approaches for demand side management in the smart grid / Nikos Hatziargyriou
- 10.1. Introduction
- 10.1.1. Related bibliography
- 10.1.2. Overview
- 10.2. Bilevel decision framework for optimal energy procurement of DERs
- 10.2.1. Nomenclature
- 10.2.2. Model
- 10.2.3. Solution methodology
- 10.2.4. Implementation
- 10.2.5. Results
- 10.3. Bilevel decision framework for optimal energy management of DERs
- 10.3.1. Nomenclature
- 10.3.2. Model
- 10.3.3. Solution methodology
- 10.3.4. Implementation
- 10.3.5. Results
- 10.4. Conclusions
- Bibliography
- pt. III Smart grid communications and networking
- 11. Cyber security of smart grid state estimation: attacks and defense mechanisms / Zhong Fan
- 11.1. Power system state estimation and FDIAs
- 11.1.1. State estimation
- 11.1.2. Malicious FDIAs
- 11.2. Stealth attack strategies
- 11.2.1. Random attacks
- 11.2.2. Numerical results
- 11.2.3. Target attacks
- 11.2.4. Numerical results
- 11.3. Defense mechanisms
- 11.3.1. Strategic protection
- 11.3.2. Numerical results
- 11.3.3. Robust detection
- 11.3.4. Numerical results
- 11.4. Conclusions
- Bibliography
- 12. Overview of research in the ADVANTAGE project / Dejan Vukobratovic
- 12.1. Introduction
- 12.2. Cellular-enabled D2D communication for smart grid neighbourhood area networks
- 12.2.1. Limitations of LTE technology
- 12.2.2. promising approach: LTE-D2D communication
- 12.2.3. State of the art
- open challenges
- 12.2.4. Conclusions and outlook
- 12.3. Power talk in DC MicroGrids: merging primary control with communication.
- Note continued: 12.3.1. Why power talk?
- 12.3.2. Embedding information in primary control loops
- 12.3.3. One-way power talk communication
- 12.3.4. Conclusions and outlook
- 12.4. Compression techniques for smart meter data
- 12.4.1. Introduction
- 12.4.2. Basic concepts of data compression
- 12.4.3. Smart meter data and communication scenario
- 12.5. State estimation in electric power distribution system with belief propagation algorithm
- 12.5.1. Introduction
- 12.5.2. Conventional state estimation
- 12.5.3. Belief propagation algorithm in electric power distribution system
- 12.6. Research and design of novel control algorithms needed for the effective integration of distributed generators
- 12.6.1. Overview
- 12.6.2. Hierarchical control of a microgrid
- 12.6.3. Conclusions and outlook
- 12.7. Chapter conclusions
- Acknowledgements
- Bibliography
- 13. Big data analysis of power grid from random matrix theory / Qian Ai
- 13.1. Background for conduct SA in power grid with big data analytics
- 13.1.1. Smart grid
- an essential big data system with 4Vs data
- 13.1.2. Smart grid and its stability, control, and SA
- 13.1.3. Approach to SA
- big data analytics and unsupervised learning mechanism
- 13.1.4. RMM and probability in high dimension
- 13.2. Three general principles related to big data analytics
- 13.2.1. Concentration
- 13.2.2. Suprema
- 13.2.3. Universality
- 13.3. Fundamentals of random matrices
- 13.3.1. Types of matrices
- 13.3.2. Central limiting theorem
- 13.3.3. Limit results of GUE and LUE
- 13.3.4. Asymptotic expansion for the Stieltjes transform of GUE
- 13.3.5. rate of convergence for spectra of GUE and LUE
- 13.4. From power grid to RMM
- 13.5. LES and related research
- 13.5.1. Definition of LES
- 13.5.2. Law of Large Numbers
- 13.5.3. CLTs of LES
- 13.5.4. CLT for covariance matrices
- 13.5.5. LES for Ring law
- 13.5.6. LES for covariance matrices
- 13.6. Data preprocessing
- data fusion
- 13.6.1. Augmented matrix method for power systems
- 13.6.2. Another kind of data fusion
- 13.7. new methodology and epistemology for power systems
- 13.7.1. evolution of power systems and group-work mode
- 13.7.2. methodology of SA for smart grids
- 13.7.3. Novel indicator system and its advantages
- 13.8. Case studies
- 13.8.1. Case 1: anomaly detection and statistical indicators designing using simulated 118-bus system
- 13.8.2. Case 2: correlation analysis for single factor using simulated 118-bus system
- 13.8.3. Case 3: advantages of LES and visualization using 3D power-map
- 13.8.4. Case 4: SA using real data
- Bibliography
- 14. model-driven evaluation of demand response communication protocols for smart grid / Rune Hylsberg Jacobsen
- 14.1. Introduction
- 14.2. State of the art
- 14.3. Background
- 14.3.1. Demand response reference architecture
- 14.3.2. Demand response programs
- 14.3.3. Demand response protocols
- 14.3.4. Modeling languages and tools
- 14.3.5. Evaluation metrics
- 14.4. methodology
- 14.4.1. Describing household scenarios, demand response strategy, and protocol
- 14.4.2. Platform-independent and executable descriptions
- 14.4.3. Evaluating demand response strategy and protocol
- 14.5. Proof of concept
- 14.6. Experimental results
- 14.6.1. Case 1: individual household
- 14.6.2. Case 2: load aggregation
- 14.7. Conclusion
- Acknowledgments
- Bibliography
- 15. Energy-efficient smart grid communications / F. Richard Yu
- 15.1. Introduction
- 15.2. Energy-efficient wireless smart grid communications
- 15.3. System model
- 15.4. Problem transformation
- 15.5. Non-cooperative game formulation
- 15.5.1. Utility function of each DAU in the multicell OFDMA cellular network
- 15.5.2. Game formulation within each time slot
- 15.6. Analysis of the proposed EE resource allocation game with fairness
- 15.6.1. Subchannel assignment algorithm
- 15.6.2. Non-cooperative EE power allocation game
- 15.6.3. Properties of the interference pricing function factors
- 15.6.4. Existence of the NE in the proposed game
- 15.6.5. Proposed parallel iterative algorithm
- 15.7. EE resource allocation iterative algorithm
- 15.8. Simulation results and discussions
- 15.9. Conclusions
- Appendix
- A. Proof of Theorem 15.1
- B. Proof of Proposition 15.5
- C. Proof of Proposition 15.3.