|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
KNOVEL_ocn961064591 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
161112s2016 enka ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d IDEBK
|d OCLCQ
|d SINTU
|d BUF
|d STF
|d UIU
|d OCLCF
|d N$T
|d OCLCQ
|d ZCU
|d ESU
|d OTZ
|d COO
|d VT2
|d OCLCQ
|d MERUC
|d SNK
|d DKU
|d AUW
|d INTCL
|d IGB
|d D6H
|d VTS
|d RRP
|d INT
|d YDX
|d UMR
|d OCLCO
|d UMR
|d OCLCQ
|d MERER
|d WYU
|d OCLCQ
|d G3B
|d OCLCQ
|d LVT
|d S8J
|d S9I
|d OCLCQ
|d CUV
|d AU@
|d M8D
|d UKAHL
|d OCLCQ
|d ERF
|d OCLCQ
|d MM9
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 966403493
|a 1066621474
|a 1162213615
|
020 |
|
|
|a 9781523105793
|q (electronic bk.)
|
020 |
|
|
|a 1523105798
|q (electronic bk.)
|
020 |
|
|
|a 9781785611056
|q (electronic bk.)
|
020 |
|
|
|a 1785611054
|q (electronic bk.)
|
020 |
|
|
|z 9781785611049
|q (hardback)
|
020 |
|
|
|z 1785611046
|q (hardback)
|
035 |
|
|
|a (OCoLC)961064591
|z (OCoLC)966403493
|z (OCoLC)1066621474
|z (OCoLC)1162213615
|
050 |
|
4 |
|a TK3105.S637 2016eb
|
072 |
|
7 |
|a BUS
|x 054000
|2 bisacsh
|
082 |
0 |
4 |
|a 333.79320000000001
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Smarter energy :
|b from smart metering to the smart grid /
|c edited by Hongjian Sun, Nikos Hatziargyriou, H. Vincent Poor, Laurence Carpanini and Miguel Angel Sánchez Fornié.
|
264 |
|
1 |
|a London :
|b The Institution of Engineering and Technology,
|c 2016.
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a IET power and energy series ;
|v 88
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a This book presents cutting-edge perspectives and research results in smart energy spanning multiple disciplines across four main topics: smart metering, smart grid modeling, control and optimisation, and smart grid communications and networking.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g 1.
|t Smart energy -- smart grid research and projects overview /
|r Hongjian Sun --
|g 1.1.
|t Smart Grid --
|g 1.1.1.
|t Introduction --
|g 1.1.2.
|t Smart metering and data privacy --
|g 1.1.3.
|t Smart grid communications, networking and security --
|g 1.1.4.
|t Smart grid modelling, control and optimization --
|g 1.2.
|t Smart grid research: mapping of ongoing activities --
|g 1.2.1.
|t Europe --
|g 1.2.2.
|t United States of America --
|g 1.2.3.
|t Asia-Pacific --
|g 1.3.
|t Smart grid research in Europe: what comes next? --
|g 1.4.
|t SmarterEMC2 project --
|g 1.4.1.
|t Stakeholders involved in SmarterEMC2 --
|g 1.4.2.
|t Conceptual architecture of the SmarterEMC2 ICT ecosystem --
|t Acknowledgements --
|t Bibliography --
|g pt. I
|t Smart metering --
|g 2.
|t Privacy-preserving data aggregation in smart metering systems /
|r Fabio Borges --
|g 2.1.
|t Introduction --
|g 2.2.
|t Definitions --
|g 2.2.1.
|t List of acronyms --
|g 2.2.2.
|t List of symbols --
|g 2.3.
|t Background --
|g 2.4.
|t State-of-the-art protocols --
|g 2.4.1.
|t Homomorphic encryption --
|g 2.4.2.
|t Commitments --
|g 2.4.3.
|t Symmetric DC-Net (SDC-Net) --
|g 2.4.4.
|t Asymmetric DC-Net (ADC-Net) --
|g 2.5.
|t improved ADC-Net --
|g 2.6.
|t Comparison with related work --
|g 2.6.1.
|t Privacy --
|g 2.6.2.
|t Communication --
|g 2.6.3.
|t Processing time --
|g 2.6.4.
|t Techniques --
|g 2.7.
|t Simulations --
|g 2.7.1.
|t Real-world data set --
|g 2.7.2.
|t Software and hardware --
|g 2.7.3.
|t Simulation parameters --
|g 2.7.4.
|t Simulation results --
|g 2.8.
|t Conclusions --
|t Acknowledgements --
|t Bibliography --
|g 3.
|t Smart price-based scheduling of flexible residential appliances /
|r Goran Strbac --
|t Nomenclature --
|g 3.1.
|t Introduction --
|g 3.1.1.
|t Context -- emerging challenges for low-carbon electrical power systems --
|g 3.1.2.
|t Role of residential demand in addressing emerging challenges --
|g 3.1.3.
|t Challenges in scheduling residential appliances --
|g 3.1.4.
|t Overview of alternative approaches for smart scheduling of residential appliances --
|g 3.2.
|t Modelling operation and price response of flexible residential appliances --
|g 3.2.1.
|t Appliances with continuously adjustable power levels -- EV with smart charging capability --
|g 3.2.2.
|t Appliances with shiftable cycles -- WA with delay functionality --
|g 3.3.
|t Measures against demand response concentration --
|g 3.3.1.
|t Flexibility restriction --
|g 3.3.2.
|t Non-linear pricing --
|g 3.3.3.
|t Randomised pricing --
|g 3.3.4.
|t Tuning the parameters of smart measures --
|g 3.4.
|t Case studies --
|g 3.4.1.
|t Scheduling of flexible residential appliances in electricity markets --
|g 3.4.2.
|t Scheduling of flexible residential appliances for management of local distribution networks --
|g 3.5.
|t Conclusions and future work --
|t Bibliography --
|g 4.
|t Smart tariffs for demand response from smart metering platform /
|r Furong Li --
|g 4.1.
|t Introduction --
|g 4.2.
|t Electricity tariff review --
|g 4.2.1.
|t Current energy tariff products --
|g 4.2.2.
|t Variable electricity tariffs --
|g 4.3.
|t Variable ToU tariff design --
|g 4.3.1.
|t Introduction --
|g 4.3.2.
|t Rationale of proposed tariff design --
|g 4.3.3.
|t ToU tariff design by equal interval grouping --
|g 4.3.4.
|t ToU tariff development by hierarchical clustering --
|g 4.4.
|t Results and discussion --
|g 4.4.1.
|t Results of RTP tariffs --
|g 4.4.2.
|t ToU tariffs by equal interval grouping --
|g 4.4.3.
|t ToU tariffs by hierarchical clustering --
|g 4.5.
|t Impact analysis of ToU tariffs --
|g 4.5.1.
|t Flexible load modelling --
|g 4.5.2.
|t Impact analysis of designed ToU tariffs --
|g 4.5.3.
|t Benefit quantification --
|g 4.5.4.
|t Cooperation with energy storage --
|g 4.5.5.
|t Case study --
|g 4.6.
|t Impact of networks on tariff design --
|g 4.6.1.
|t Quantification of DSR on network investment --
|g 4.6.2.
|t Tariff design in response to network conditions --
|g 4.7.
|t Discussion and conclusion --
|g 4.7.1.
|t Discussion --
|g 4.7.2.
|t Conclusion --
|t Bibliography --
|g pt. II
|t Smart grid modeling, control and optimization --
|g 5.
|t Decentralized models for real-time renewable integration in future grid /
|r Kiyoshi Nakayama --
|g 5.1.
|t Introduction to future smart grid --
|g 5.2.
|t Hybrid model of centralized resource management and decentralized grid control --
|g 5.2.1.
|t Centralized resource management --
|g 5.2.2.
|t Decentralized grid control --
|g 5.3.
|t Graph modeling --
|g 5.4.
|t Maximizing real-time renewable integration --
|g 5.5.
|t General decentralized approaches --
|g 5.6.
|t Distributed nodal approach --
|g 5.6.1.
|t Initialize --
|g 5.6.2.
|t Send --
|g 5.6.3.
|t Receive --
|g 5.6.4.
|t Compare --
|g 5.6.5.
|t Optimize --
|g 5.6.6.
|t Notify --
|g 5.6.7.
|t Confirm --
|g 5.6.8.
|t StandBy --
|g 5.7.
|t Distributed clustering approach --
|g 5.7.1.
|t Tie-set graph theory and its application to distributed systems --
|g 5.7.2.
|t Tie-set Based Optimization Algorithm --
|g 5.8.
|t Case study of decentralized grid control --
|g 5.9.
|t Simulation and experiments --
|g 5.9.1.
|t Energy stimulus response --
|g 5.9.2.
|t Convergence with different renewable penetration rates --
|g 5.9.3.
|t Comparison of TBO and DLP --
|g 5.10.
|t Summary --
|t Bibliography --
|g 6.
|t Distributed and decentralized control in future power systems /
|r Chris Dent --
|g 6.1.
|t Introduction --
|g 6.2.
|t look into current power systems control --
|g 6.3.
|t Identifying the role of distributed methods --
|g 6.4.
|t Distributed optimization definitions and scope --
|g 6.4.1.
|t Distributed optimization fundamentals --
|g 6.4.2.
|t Simple price-based decomposition --
|g 6.4.3.
|t From optimization to control using prices --
|g 6.4.4.
|t Making prices work --
|g 6.5.
|t Decomposition methods --
|g 6.5.1.
|t Improving price-updates --
|g 6.5.2.
|t Decomposing an augmented Lagrangian --
|g 6.5.3.
|t Proximal decomposition methods --
|g 6.5.4.
|t Optimality Condition Decomposition --
|g 6.5.5.
|t On other distributed methods --
|g 6.6.
|t OPF insights --
|g 6.6.1.
|t Decomposition structure considerations --
|g 6.6.2.
|t Practical application considerations --
|g 6.7.
|t UC time frame --
|g 6.8.
|t ED time frame --
|g 6.9.
|t Closer to real time --
|g 6.10.
|t Conclusions --
|t Bibliography --
|g 7.
|t Multiobjective optimization for smart grid system design /
|r Wei-Yu Chiu --
|g 7.1.
|t Introduction --
|g 7.2.
|t Problem formulation --
|g 7.2.1.
|t Model of MOP --
|g 7.2.2.
|t Design examples --
|g 7.3.
|t Solution methods --
|g 7.4.
|t Numerical results --
|g 7.5.
|t Conclusion --
|t Acknowledgments --
|t Bibliography --
|g 8.
|t Frequency regulation of smart grid via dynamic demand control and battery energy storage system /
|r Lin Jiang --
|g 8.1.
|t Introduction --
|g 8.2.
|t Dynamic model of smart grid for frequency regulation --
|g 8.2.1.
|t Structure of frequency regulation --
|g 8.2.2.
|t Wind farm with variable-speed wind turbines --
|g 8.2.3.
|t Battery energy storage system --
|g 8.2.4.
|t Plug-in electric vehicles --
|g 8.2.5.
|t Controllable air conditioner based DDC --
|g 8.2.6.
|t State-space model of closed-loop LFC scheme --
|g 8.3.
|t Delay-dependent stability analysis --
|g 8.3.1.
|t Delay-dependent stability criterion --
|g 8.3.2.
|t Delay margin calculation --
|g 8.4.
|t Delay-dependent robust controller design --
|g 8.4.1.
|t Delay-dependent performance analysis --
|g 8.4.2.
|t Controller gain tuning based on the PSO algorithm --
|g 8.5.
|t Case studies --
|g 8.5.1.
|t Robust controller design --
|g 8.5.2.
|t Contribution of the DDC, BESS, and PEV to frequency regulation --
|g 8.5.3.
|t Robustness against to load disturbances --
|g 8.5.4.
|t Robustness against to parameters uncertainties --
|g 8.5.5.
|t Robustness against to time delays --
|g 8.6.
|t Conclusion --
|t Bibliography --
|g 9.
|t Distributed frequency control and demand-side management /
|r I.
|
505 |
0 |
0 |
|g Lestas --
|g 9.1.
|t Introduction --
|g 9.1.1.
|t Frequency control in the power grid --
|g 9.1.2.
|t Optimality in frequency control --
|g 9.1.3.
|t Demand-side management --
|g 9.2.
|t Swing equation dynamics --
|g 9.3.
|t Primary frequency control --
|g 9.3.1.
|t Historical development --
|g 9.3.2.
|t Passivity conditions for stability analysis --
|g 9.3.3.
|t Economic optimality and fairness in primary control --
|g 9.3.4.
|t Supply passivity framework for demand-side integration --
|g 9.4.
|t Secondary frequency control --
|g 9.4.1.
|t Historical development --
|g 9.4.2.
|t Economic optimality and fairness in secondary control --
|g 9.4.3.
|t Stability guarantees via a dissipativity framework --
|g 9.5.
|t Future challenges --
|t Bibliography --
|g 10.
|t Game theory approaches for demand side management in the smart grid /
|r Nikos Hatziargyriou --
|g 10.1.
|t Introduction --
|g 10.1.1.
|t Related bibliography --
|g 10.1.2.
|t Overview --
|g 10.2.
|t Bilevel decision framework for optimal energy procurement of DERs --
|g 10.2.1.
|t Nomenclature --
|g 10.2.2.
|t Model --
|g 10.2.3.
|t Solution methodology --
|g 10.2.4.
|t Implementation --
|g 10.2.5.
|t Results --
|g 10.3.
|t Bilevel decision framework for optimal energy management of DERs --
|g 10.3.1.
|t Nomenclature --
|g 10.3.2.
|t Model --
|g 10.3.3.
|t Solution methodology --
|g 10.3.4.
|t Implementation --
|g 10.3.5.
|t Results --
|g 10.4.
|t Conclusions --
|t Bibliography --
|g pt. III
|t Smart grid communications and networking --
|g 11.
|t Cyber security of smart grid state estimation: attacks and defense mechanisms /
|r Zhong Fan --
|g 11.1.
|t Power system state estimation and FDIAs --
|g 11.1.1.
|t State estimation --
|g 11.1.2.
|t Malicious FDIAs --
|g 11.2.
|t Stealth attack strategies --
|g 11.2.1.
|t Random attacks --
|g 11.2.2.
|t Numerical results --
|g 11.2.3.
|t Target attacks --
|g 11.2.4.
|t Numerical results --
|g 11.3.
|t Defense mechanisms --
|g 11.3.1.
|t Strategic protection --
|g 11.3.2.
|t Numerical results --
|g 11.3.3.
|t Robust detection --
|g 11.3.4.
|t Numerical results --
|g 11.4.
|t Conclusions --
|t Bibliography --
|g 12.
|t Overview of research in the ADVANTAGE project /
|r Dejan Vukobratovic --
|g 12.1.
|t Introduction --
|g 12.2.
|t Cellular-enabled D2D communication for smart grid neighbourhood area networks --
|g 12.2.1.
|t Limitations of LTE technology --
|g 12.2.2.
|t promising approach: LTE-D2D communication --
|g 12.2.3.
|t State of the art -- open challenges --
|g 12.2.4.
|t Conclusions and outlook --
|g 12.3.
|t Power talk in DC MicroGrids: merging primary control with communication.
|
505 |
0 |
0 |
|g Note continued:
|g 12.3.1.
|t Why power talk? --
|g 12.3.2.
|t Embedding information in primary control loops --
|g 12.3.3.
|t One-way power talk communication --
|g 12.3.4.
|t Conclusions and outlook --
|g 12.4.
|t Compression techniques for smart meter data --
|g 12.4.1.
|t Introduction --
|g 12.4.2.
|t Basic concepts of data compression --
|g 12.4.3.
|t Smart meter data and communication scenario --
|g 12.5.
|t State estimation in electric power distribution system with belief propagation algorithm --
|g 12.5.1.
|t Introduction --
|g 12.5.2.
|t Conventional state estimation --
|g 12.5.3.
|t Belief propagation algorithm in electric power distribution system --
|g 12.6.
|t Research and design of novel control algorithms needed for the effective integration of distributed generators --
|g 12.6.1.
|t Overview --
|g 12.6.2.
|t Hierarchical control of a microgrid --
|g 12.6.3.
|t Conclusions and outlook --
|g 12.7.
|t Chapter conclusions --
|t Acknowledgements --
|t Bibliography --
|g 13.
|t Big data analysis of power grid from random matrix theory /
|r Qian Ai --
|g 13.1.
|t Background for conduct SA in power grid with big data analytics --
|g 13.1.1.
|t Smart grid -- an essential big data system with 4Vs data --
|g 13.1.2.
|t Smart grid and its stability, control, and SA --
|g 13.1.3.
|t Approach to SA -- big data analytics and unsupervised learning mechanism --
|g 13.1.4.
|t RMM and probability in high dimension --
|g 13.2.
|t Three general principles related to big data analytics --
|g 13.2.1.
|t Concentration --
|g 13.2.2.
|t Suprema --
|g 13.2.3.
|t Universality --
|g 13.3.
|t Fundamentals of random matrices --
|g 13.3.1.
|t Types of matrices --
|g 13.3.2.
|t Central limiting theorem --
|g 13.3.3.
|t Limit results of GUE and LUE --
|g 13.3.4.
|t Asymptotic expansion for the Stieltjes transform of GUE --
|g 13.3.5.
|t rate of convergence for spectra of GUE and LUE --
|g 13.4.
|t From power grid to RMM --
|g 13.5.
|t LES and related research --
|g 13.5.1.
|t Definition of LES --
|g 13.5.2.
|t Law of Large Numbers --
|g 13.5.3.
|t CLTs of LES --
|g 13.5.4.
|t CLT for covariance matrices --
|g 13.5.5.
|t LES for Ring law --
|g 13.5.6.
|t LES for covariance matrices --
|g 13.6.
|t Data preprocessing -- data fusion --
|g 13.6.1.
|t Augmented matrix method for power systems --
|g 13.6.2.
|t Another kind of data fusion --
|g 13.7.
|t new methodology and epistemology for power systems --
|g 13.7.1.
|t evolution of power systems and group-work mode --
|g 13.7.2.
|t methodology of SA for smart grids --
|g 13.7.3.
|t Novel indicator system and its advantages --
|g 13.8.
|t Case studies --
|g 13.8.1.
|t Case 1: anomaly detection and statistical indicators designing using simulated 118-bus system --
|g 13.8.2.
|t Case 2: correlation analysis for single factor using simulated 118-bus system --
|g 13.8.3.
|t Case 3: advantages of LES and visualization using 3D power-map --
|g 13.8.4.
|t Case 4: SA using real data --
|t Bibliography --
|g 14.
|t model-driven evaluation of demand response communication protocols for smart grid /
|r Rune Hylsberg Jacobsen --
|g 14.1.
|t Introduction --
|g 14.2.
|t State of the art --
|g 14.3.
|t Background --
|g 14.3.1.
|t Demand response reference architecture --
|g 14.3.2.
|t Demand response programs --
|g 14.3.3.
|t Demand response protocols --
|g 14.3.4.
|t Modeling languages and tools --
|g 14.3.5.
|t Evaluation metrics --
|g 14.4.
|t methodology --
|g 14.4.1.
|t Describing household scenarios, demand response strategy, and protocol --
|g 14.4.2.
|t Platform-independent and executable descriptions --
|g 14.4.3.
|t Evaluating demand response strategy and protocol --
|g 14.5.
|t Proof of concept --
|g 14.6.
|t Experimental results --
|g 14.6.1.
|t Case 1: individual household --
|g 14.6.2.
|t Case 2: load aggregation --
|g 14.7.
|t Conclusion --
|t Acknowledgments --
|t Bibliography --
|g 15.
|t Energy-efficient smart grid communications /
|r F. Richard Yu --
|g 15.1.
|t Introduction --
|g 15.2.
|t Energy-efficient wireless smart grid communications --
|g 15.3.
|t System model --
|g 15.4.
|t Problem transformation --
|g 15.5.
|t Non-cooperative game formulation --
|g 15.5.1.
|t Utility function of each DAU in the multicell OFDMA cellular network --
|g 15.5.2.
|t Game formulation within each time slot --
|g 15.6.
|t Analysis of the proposed EE resource allocation game with fairness --
|g 15.6.1.
|t Subchannel assignment algorithm --
|g 15.6.2.
|t Non-cooperative EE power allocation game --
|g 15.6.3.
|t Properties of the interference pricing function factors --
|g 15.6.4.
|t Existence of the NE in the proposed game --
|g 15.6.5.
|t Proposed parallel iterative algorithm --
|g 15.7.
|t EE resource allocation iterative algorithm --
|g 15.8.
|t Simulation results and discussions --
|g 15.9.
|t Conclusions --
|t Appendix --
|g A.
|t Proof of Theorem 15.1 --
|g B.
|t Proof of Proposition 15.5 --
|g C.
|t Proof of Proposition 15.3.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Electrical & Power Engineering
|
650 |
|
0 |
|a Smart power grids.
|
650 |
|
6 |
|a Réseaux électriques intelligents.
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Real Estate
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Smart power grids
|2 fast
|
650 |
|
7 |
|a security of data.
|2 inspect
|
650 |
|
7 |
|a smart meters.
|2 inspect
|
650 |
|
7 |
|a smart power grids.
|2 inspect
|
700 |
1 |
|
|a Sun, Hongjian,
|e editor.
|
700 |
1 |
|
|a Hatziargyriou, Nikos,
|e editor.
|
700 |
1 |
|
|a Poor, H. Vincent,
|e editor.
|
700 |
1 |
|
|a Carpanini, Laurence,
|e editor.
|
700 |
1 |
|
|a Sanchez-Fornie, Miguel A.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Smarter energy.
|d London : The Institution of Engineering and Technology, 2016
|z 9781785611049
|w (DLC) 2016499838
|w (OCoLC)966602733
|
830 |
|
0 |
|a IET power and energy series ;
|v 88.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpSEFSMSG1/toc
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH31057463
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4718332
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1359621
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis36488642
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13203620
|
994 |
|
|
|a 92
|b IZTAP
|