Cargando…

High Speed Data Converters /

High speed data converters represent one of the most challenging, important and exciting analog and mixed-signal systems. They are ubiquitous in our modern and highly connected world. Understanding and designing this class of converters require proficiency in analog circuit design, digital design, a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ali, Ahmed M. A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Institution of Engineering and Technology, 2016.
Colección:Materials, circuits and devices series ; 26.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Introduction
  • 1.1. Ideal data conversion
  • 1.2. The sampling operation
  • 1.2.1. Sampling theorem
  • 1.2.2. Sampling of bandpass signals
  • 1.3. The reconstruction operation
  • 1.4. The quantization operation
  • 1.5. Coding
  • 1.6. Undersampling and oversampling
  • 1.7. Decimation and interpolation
  • 1.8. Conclusion
  • Problems
  • References
  • 2. Performance metrics
  • 2.1. Resolution and sampling rate
  • 2.2. Signal-to-noise-and-distortion ratio (SNDR or SINAD)
  • 2.3. Spurious-free dynamic range (SFDR)
  • 2.3.1. HD2 and HD3
  • 2.3.2. Differential operation
  • 2.4. Inter-modulation distortion (IMD)
  • 2.5. Relationship between HD and IMD
  • 2.6. Differential and integral non-linearity (DNL and INL)
  • 2.7. Relationship between SFDR and INL
  • 2.7.1. HD2 and HD3 INL patterns
  • 2.7.2. Saw-tooth INL pattern
  • 2.8. Offset and gain error
  • 2.9. Jitter
  • 2.9.1. Analysis
  • 2.9.2. Intuitive perspective
  • 2.9.3. Jitter measurement
  • 2.9.4. Types of random jitter.
  • Note continued: 2.9.5. Jitter and phase noise
  • 2.10. Bit error rate (BER)
  • 2.11. Power consumption and figure of merit
  • 2.12. Conclusion
  • Problems
  • References
  • 3. Data converter architectures
  • 3.1. Flash ADC
  • 3.2. Flash ADC with interpolation
  • 3.3. Multi-step ADC
  • 3.4. Sub-ranging ADC
  • 3.5. Folding ADC
  • 3.6. Pipelined ADC
  • 3.7. Successive approximation (SAR) ADC
  • 3.8. Pipelined and SAR ADC
  • 3.9. Time-interleaved ADC
  • 3.10. Sigma-delta ADC
  • 3.10.1. Oversampling and noise shaping
  • 3.10.2. Single-bit modulator
  • 3.10.3. Overloading
  • 3.10.4. First-order modulator
  • 3.10.5. Second-order modulator
  • 3.10.6. Higher order and cascaded sigma-delta modulators
  • 3.10.7. Discrete-time and continuous-time sigma-delta modulators
  • 3.10.8. Multi-bit modulator
  • 3.10.9. Bandpass Sigma-delta converter
  • 3.10.10. Concluding remarks
  • 3.11. DAC architectures
  • 3.11.1. Resistive DAC
  • 3.11.2. Capacitive DAC
  • 3.11.3. Current steering DAC
  • 3.12. Conclusion
  • Problems.
  • Note continued: References
  • 4. Sampling
  • 4.1. CMOS samplers
  • 4.1.1. Sampling noise
  • 4.1.2. Sampling linearity
  • 4.2. Input buffer
  • 4.2.1. Input buffer design
  • 4.2.2. Input buffer non-linearity
  • 4.2.3. Summary of trade-offs
  • 4.3.Complementary bipolar sample and hold
  • 4.4. Clock jitter
  • 4.5. Conclusion
  • Problems
  • References
  • 5.Comparators
  • 5.1.Comparator function
  • 5.2.Comparator structure
  • 5.2.1. Open loop comparator
  • 5.2.2.Comparators with hysteresis
  • 5.2.3. Regenerative comparators
  • 5.3. Metastability
  • 5.4. Switched capacitor comparators
  • 5.4.1. Level shifting input network
  • 5.4.2. Charge redistribution input network
  • 5.5. Offset cancellation
  • 5.6. Loading and kick-back
  • 5.7.Comparator examples
  • 5.8. Conclusion
  • Problems
  • References
  • 6. Amplifiers
  • 6.1. Switched capacitor circuits
  • 6.1.1. Switched capacitor resistor
  • 6.1.2. Switched capacitor active filters
  • 6.1.3. Switched capacitor amplifiers.
  • Note continued: 6.1.4. Non-idealities of a switch capacitor amplifier
  • 6.2. Amplifier design
  • 6.2.1. DC gain
  • 6.2.2. Slew rate
  • 6.2.3. Small-signal settling
  • 6.2.4. CMRR and PSRR
  • 6.2.5. Noise
  • 6.3. Operational amplifiers
  • 6.3.1. The differential pair
  • 6.3.2. The Miller effect
  • 6.3.3. The cascode amplifier
  • 6.3.4. The active cascode amplifier
  • 6.3.5. The two-stage amplifier
  • 6.3.6. The common-mode feedback
  • 6.4. Conclusion
  • Problems
  • References
  • 7. Pipelined A/D converters
  • 7.1. Architecture
  • 7.2. Switched capacitor MDACs
  • 7.2.1. Reference buffer
  • 7.3. Performance limitations
  • 7.3.1. Sampling non-linearity
  • 7.3.2. Quantization non-linearity
  • 7.3.3. Noise and jitter
  • 7.4. Pipelined ADC design considerations
  • 7.4.1. Sampling capacitance value and input full-scale
  • 7.4.2. Number of bits per stage
  • 7.4.3. Scaling factor
  • 7.4.4. Input buffer
  • 7.5. Accuracy and speed challenge
  • 7.6. Conclusion
  • Problems
  • References.
  • Note continued: 8. Time-interleaved converters
  • 8.1. Time-interleaving
  • 8.2. Offset mismatch
  • 8.2.1. Special cases
  • 8.2.2. Intuitive perspective
  • 8.3. Gain mismatch
  • 8.3.1. Special cases
  • 8.3.2. Intuitive perspective
  • 8.4. Timing mismatch
  • 8.4.1. Special cases
  • 8.4.2. Intuitive perspective
  • 8.5. Bandwidth mismatch
  • 8.6. Mismatch summary
  • 8.7. Ping-pong special cases
  • 8.7.1.M = 2, gain mismatch only
  • 8.7.2.M = 2, phase mismatch only
  • 8.8. Non-linearity mismatch
  • 8.9. Improving performance
  • 8.9.1. Improving matching
  • 8.9.2. Using a full-speed sample and hold
  • 8.9.3. Calibration
  • 8.9.4. Randomization
  • 8.10. Conclusion
  • Problems
  • References
  • 9. Digitally assisted converters
  • 9.1. Calibration of pipelined ADC non-linearity
  • 9.1.1. Factory and foreground calibration
  • 9.1.2. Correlation-based calibration
  • 9.1.3. Summing node calibration
  • 9.1.4. Reference ADC calibration
  • 9.1.5. Split-ADC calibration
  • 9.1.6. Settling error calibration.
  • Note continued: 9.1.7. Memory calibration
  • 9.1.8. Kick-back calibration
  • 9.1.9. Residue amplifier non-linearity
  • 9.1.10. Coupling calibration
  • 9.2. Dither
  • 9.3. Flash sub-ADC calibration
  • 9.4. Calibration of mismatches in interleaved ADCs
  • 9.4.1. Offset mismatch calibration
  • 9.4.2. Gain mismatch calibration
  • 9.4.3. Timing mismatch calibration
  • 9.4.4. Other mismatches
  • 9.4.5. Randomization
  • 9.5. Conclusion
  • Problems
  • References
  • 10. Evolution and trends
  • 10.1. Performance evolution
  • 10.2. Process evolution
  • 10.3. Future trends
  • References.