Cargando…

Explosion Hazards in the Process Industries.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Eckhoff, Rolf K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Saint Louis : Elsevier Science, 2016.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 KNOVEL_ocn952247531
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 160625s2016 mou o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d OCLCF  |d YDXCP  |d TEFOD  |d KNOVL  |d OCLCQ  |d UAB  |d OCLCQ  |d AU@  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 951999392  |a 1117860950  |a 1264768355 
020 |a 9780128032749  |q (electronic bk.) 
020 |a 012803274X  |q (electronic bk.) 
020 |z 0128032731 
020 |z 9780128032732 
035 |a (OCoLC)952247531  |z (OCoLC)951999392  |z (OCoLC)1117860950  |z (OCoLC)1264768355 
037 |a 8A7C15EC-CCDF-4FFA-B40E-E00D2DAFF905  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a TH9446.D86 
072 7 |a TEC  |x 000000  |2 bisacsh 
082 0 4 |a 604.7  |2 20 
049 |a UAMI 
100 1 |a Eckhoff, Rolf K. 
245 1 0 |a Explosion Hazards in the Process Industries. 
250 |a 2nd ed. 
260 |a Saint Louis :  |b Elsevier Science,  |c 2016. 
300 |a 1 online resource (578 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover -- EXPLOSION HAZARDS IN THE PROCESS INDUSTRIES -- EXPLOSION HAZARDS IN THE PROCESS INDUSTRIES -- Copyright -- DEDICATION -- CONTENTS -- ABOUT THE AUTHOR -- PREFACE TO FIRST EDITION -- PREFACE TO SECOND EDITION -- One -- Introduction -- 1.1 PROCESS SAFETY-A PERSISTENT CHALLENGE -- 1.2 WHAT IS AN EXPLOSION? -- 1.3 GAS/VAPOR AND DUST EXPLOSIONS-REAL HAZARDS IN THE PROCESS INDUSTRIES -- 1.4 HOW AND WHERE ACCIDENTAL EXPLOSIVE GAS/VAPOR AND DUST CLOUDS ARE GENERATED IN THE PROCESS INDUSTRIES: BASIC DIFFERENCES -- 1.4.1 Similar Ignition and Combustion Properties of Clouds Generated -- 1.4.2 Influence of Inertial Forces on the Movement of Dust Particles in a Dust Cloud -- 1.4.3 Fundamental Differences Between the Ways Explosive Clouds Are Generated -- 1.4.4 Migration of Dust Particles Through Narrow Holes and Gaps in Enclosure Walls -- 1.5 EUROPEAN DEFINITION OF "EXPLOSIVE ATMOSPHERES" -- 1.6 DOMINO/ESCALATION EFFECTS FROM ACCIDENTAL EXPLOSIONS -- 1.7 THE "HUMAN FACTOR" IN PROCESS SAFETY -- Two -- Gas and Vapor Cloud Explosions -- 2.1 COMBUSTION OF GASES AND VAPORS -- 2.1.1 Diffusion Combustion and "Premixed" Combustion -- 2.1.2 Laminar Burning of Premixed Gas/Vapor and Air -- 2.1.3 Flammable Concentration Ranges for Premixed Gas/Vapor and Air -- 2.1.3.1 General -- 2.1.3.2 Flash Point of a Combustible Liquid -- 2.1.3.3 Classification of Flammable Fluids According to Their Flash Points -- 2.1.4 Maximum Pressures Generated from Constant-Volume Adiabatic Combustion of Premixed Gas/Vapor and Air -- 2.1.5 The "Expansion Ratio" in Combustion of Premixed Gas/Vapor and Air -- 2.1.6 Turbulent Combustion of Premixed Gas/Vapor and Air -- 2.1.7 Detonation of Premixed Gas/Vapor and Air -- 2.2 IGNITION OF PREMIXED GAS/VAPOR AND AIR -- 2.2.1 Introduction -- 2.2.2 What Is Ignition? Basic Theory of "Thermal Runaway". 
505 8 |a 2.2.3 Ignition by Open Flames and Hot Gases -- 2.2.4 Ignition by Hot Surfaces -- 2.2.4.1 Overview -- 2.2.4.2 Minimum Ignition Temperatures of Multicomponent Fuels in Air -- 2.2.4.3 Solution for the Future: Dynamic Computer Simulation Models of Hot Surface Ignition -- 2.2.4.4 Standard Test Methods for Tmin -- 2.2.5 Ignition by Burning Metal Particles, "Thermite" Reactions, and Transient "Hot-Spots" -- 2.2.5.1 Introductory Overview -- 2.2.5.2 Ignition by Small Burning Metal Particles from Single Impacts -- 2.2.5.3 Ignition by Thermite Flashes -- 2.2.5.4 Ignition by Transient Hot-Spots -- 2.2.6 Ignition by Electric Sparks, Arcs, and Electrostatic Discharges -- 2.2.6.1 Electric Sparks Between Two Conducting Electrodes -- 2.2.6.2 Various Forms of One-Electrode Electrostatic Discharges from Charged Nonconductors: Concept of "Equivalent Energy" -- 2.2.7 Ignition by a Jet of Hot Combustion Products -- 2.2.7.1 The Basic Process -- 2.2.7.2 Grouping of Ignition Sensitivity of Premixed Gas/Air According to MESG -- 2.2.8 Ignition by Rapid Adiabatic Compression -- 2.2.9 Ignition by Light Radiation -- 2.2.10 Concluding Remark -- 2.3 CASE HISTORIES OF ACCIDENTAL GAS/VAPOR CLOUD EXPLOSIONS -- 2.3.1 Motivation -- 2.3.2 Historical Perspective: Methane Explosions in Coal Mines -- 2.3.3 Some Older Published Reviews of Major Accidental Gas/Vapor Cloud Explosions -- 2.3.4 The Flixborough Disaster, United Kingdom (1974) -- 2.3.4.1 Summary -- 2.3.4.2 The Process and the Plant -- 2.3.4.3 Events Prior to the Explosion -- 2.3.4.4 The Explosion -- 2.3.4.5 The Investigation -- 2.3.5 The Beek Explosion, The Netherlands (1975) -- 2.3.5.1 Summary -- 2.3.5.2 Process and Plant -- 2.3.5.3 Events Prior to the Explosion -- 2.3.5.4 The Explosion -- 2.3.5.5 Computer Simulation -- 2.3.6 The Arendal Explosion, Gothenburg, Sweden (1981) -- 2.3.6.1 Summary -- 2.3.6.2 The Site of the Event. 
505 8 |a 2.3.6.3 Leak and Vapor Cloud Formation -- 2.3.6.4 Ignition and Explosion -- 2.3.7 Methane Explosion in a 17,000m3 Coal Silo at Elkford, British Columbia, Canada (1982) -- 2.3.7.1 Plant and Process -- 2.3.7.2 The Explosion and Its Consequences -- 2.3.7.3 Possible Ignition Source -- 2.3.8 The "West Vanguard" Explosion in the North Sea (1985) -- 2.3.8.1 Summary -- 2.3.8.2 Site of Explosion -- 2.3.8.3 Events Leading to the Explosion -- 2.3.8.4 The Ignition Sources -- 2.3.8.5 The Explosions and Their Consequences -- 2.3.8.6 Computer Simulations of Gas Explosions -- 2.3.9 Catastrophic Gas Explosion in Taegu, South Korea, April 1995 -- 2.3.9.1 Overview -- 2.3.9.2 Circumstances Before the Explosion -- 2.3.9.3 Possible Causes of Explosion -- 2.3.9.3.1 Scenario 1 -- 2.3.9.3.2 Scenario 2 -- 2.3.9.3.3 Scenario 3 -- 2.3.9.4 Extent of Explosion and Its Consequences -- 2.3.9.5 Rescue Operations -- 2.3.9.6 Lessons Learnt -- 2.3.9.7 The"Human Factor" -- 2.3.10 Explosion at Buncefield Oil Storage Depot, United Kingdom in 2005 -- 2.3.10.1 The Main Investigation -- 2.3.10.2 Were the High Overpressures in the Major Explosion Nevertheless Caused by Trees and Bushes? -- 2.3.11 The Tesoro Anacortes Refinery Explosion -- 2.3.11.1 Overview of Similar Accidents in the United States -- 2.3.11.2 Introduction to Anacortes Refinery Explosion -- 2.3.11.3 The Chain of Events -- 2.3.11.4 Further Analysis of the HTHA at the E Heat Exchanger -- 2.3.11.5 Recommendations and Concerns Expressed by CSB -- 2.3.11.5.1 Technical Matters -- 2.3.11.5.2 Organizational Concerns -- 2.4 MEANS OF PREVENTING AND MITIGATING/CONTROLLING GAS/VAPOR EXPLOSIONS IN THE PROCESS INDUSTRIES -- 2.4.1 Application of the Concept of "Inherently Safer Plant Design" to Prevention and Mitigation/Control of Accidental Gas/Vapor ... -- 2.4.1.1 Outline of Basic Concept -- 2.4.1.2 Examples -- 2.4.1.2.1 Minimalization. 
505 8 |a 2.4.1.2.2 Substitution -- 2.4.1.2.3 Moderation -- 2.4.1.2.4 Simplification -- 2.4.2 Preventing, and Limiting Size of, Explosive Gas/Vapor Clouds -- 2.4.2.1 Preventing Gas Leaks from Process Equipment -- 2.4.2.1.1 Piping and Vessels -- 2.4.2.1.2 Flanges and Connections -- 2.4.2.1.3 Instrumentation, Valves, and Rotating Machinery -- 2.4.2.2 Minimizing Size of Gas Cloud in Case of Accidental Leaks by Early Leak Detection and Effective Shutdown -- 2.4.2.2.1 Overall Objective and Performance Criteria of Gas Detection Systems -- 2.4.2.2.2 Detector Types -- 2.4.2.2.3 Coverage and Location of Gas Detectors -- 2.4.2.2.4 Gas Detection Alarms -- 2.4.2.2.5 Other Issues of Concern Related to Gas Detection Systems Include -- 2.4.2.2.6 Mist/Spray Detectors -- 2.4.2.3 Emergency Shutdown Systems (ESD) -- 2.4.2.3.1 Purpose of ESD Systems -- 2.4.2.3.2 Manual ESD Activation -- 2.4.2.3.3 ESD Actions and Documentation -- 2.4.2.3.4 ESD Alarms -- 2.4.2.3.5 ESD Response Time/Rate -- 2.4.2.3.6 ESD Independence, Operating Integrity, Reliability, and Survivability -- 2.4.2.3.7 ESD Fail-to-Safe Principle -- 2.4.2.4 ESD Man-Machine Interface -- 2.4.2.5 Fast Dilution with Air of Gas Leaks by Natural Ventilation and Forced Heating, Ventilation, and Air Conditioning Systems (HVAC) -- 2.4.2.5.1 Overview -- 2.4.2.5.2 Natural Ventilation in Classified Areas -- 2.4.2.5.3 Forced/Mechanical Ventilation in Classified Areas -- 2.4.2.5.4 Documentation and Modification -- 2.4.3 Preventing Ignition Sources -- 2.4.3.1 Introduction -- 2.4.3.2 Open Flames -- 2.4.3.3 Hot Surfaces -- 2.4.3.4 Burning Metal Particles, "Thermite" Reactions, and Transient "Hot Spots" -- 2.4.3.5 Ignition by Electric Sparks, Arcs, and Electrostatic Discharges -- 2.4.3.6 Ignition by a Jet of Hot Combustion Products -- 2.4.3.7 Ignition by Light Radiation -- 2.4.4 Controlling Ignition Sources -- 2.4.4.1 Introduction. 
505 8 |a 2.4.4.2 Equipment in Naturally Ventilated, Normally Nonhazardous, Areas -- 2.4.4.3 Isolation of Electrical Ignition Sources -- 2.4.4.3.1 Group 1 -- 2.4.4.3.2 Group 2 -- 2.4.4.3.3 Group 3 -- 2.4.4.4 Isolation of Nonelectrical Ignition Sources -- 2.4.4.4.1 Group 1 -- 2.4.4.4.2 Group 2 -- 2.4.4.4.3 Group 3 -- 2.4.4.5 Cranes -- 2.4.4.6 Human-Machine Interface (HMI) in Central Control Room -- 2.4.4.7 Operation, Inspection and Maintenance -- 2.4.5 Mitigating/Controlling Gas/Vapor Cloud Explosions Once Initiated Despite Preventive Measures -- 2.4.5.1 Control and Mitigation-Two Different Concepts? -- 2.4.5.2 Explosion Isolation: Minimizing Explosion Propagation Inside Process Equipment Using Shut-off Valves and Other Physical Bar ... -- 2.4.5.2.1 Reasons for Using Explosion Isolation -- 2.4.5.2.2 Mechanical Valves -- 2.4.5.2.3 Flame Arresters -- 2.4.5.2.4 Flame Interruption by Automatic Injection of Suppressant -- 2.4.5.3 Minimizing Gas Cloud Size and Controlling Gas Cloud Location Outside Process Equipment Using Physical Barriers -- 2.4.5.3.1 The Hazardous Situation in a Brief Historical Perspective -- 2.4.5.3.2 Definition of a Physical "Barrier" -- 2.4.5.3.3 Cloud Size and Location Control Barriers -- 2.4.5.4 Use of Physical Barriers for Controlling Explosion Violence -- 2.4.5.4.1 Controlling Precompression (Pressure Piling) -- 2.4.5.4.2 Controlling Turbulence Generation -- 2.4.5.4.3 Suitable Materials for Soft Barriers -- 2.4.5.4.4 Additional Hazards to Be Considered When Using Soft Physical Barriers Other Than Water -- 2.4.5.5 Design of Buildings to Prevent Damage by Gas Explosions -- 2.4.5.6 Explosion Venting -- 2.4.5.6.1 What Is Explosion Venting? -- 2.4.5.6.2 Vent Covers -- 2.4.5.6.3 Potential Hazards Caused by Venting -- 2.4.5.6.4 Use of Vent Ducts -- 2.4.5.6.5 Reaction Forces Caused by Venting. 
590 |a Knovel  |b ACADEMIC - Safety & Industrial Hygiene 
650 0 |a Dust explosions. 
650 0 |a Fire prevention. 
650 0 |a Industrial accidents. 
650 6 |a Coups de poussières. 
650 6 |a Incendies  |x Prévention. 
650 7 |a fire prevention.  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING  |x General.  |2 bisacsh 
650 7 |a Dust explosions.  |2 fast  |0 (OCoLC)fst00899657 
650 7 |a Fire prevention.  |2 fast  |0 (OCoLC)fst00925460 
650 7 |a Industrial accidents.  |2 fast  |0 (OCoLC)fst00970769 
776 0 8 |i Print version:  |a Eckhoff, Rolf K.  |t Explosion Hazards in the Process Industries.  |d Saint Louis : Elsevier Science, ©2016  |z 9780128032732 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpEHPIE001/toc  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4558063 
938 |a EBSCOhost  |b EBSC  |n 1220805 
938 |a YBP Library Services  |b YANK  |n 13043528 
994 |a 92  |b IZTAP