Cargando…

Bayesian signal processing : classical, modern, and particle filtering methods /

Bayesian-based signal processing is expected to dominate the future of model-based signal processing for years to come. This book develops the 'Bayesian approach' to statistical signal processing for a variety of useful model sets with an emphasis on nonlinear/non-Gaussian problems, as wel...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Candy, James V. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons Inc., [2016]
Edición:Second edition.
Colección:Wiley series on adaptive and cognitive dynamic systems.
Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control Ser. ; 54.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Bayesian Signal Processing
  • Contents
  • Preface to Second Edition
  • References
  • Preface to First Edition
  • References
  • Acknowledgments
  • List of Abbreviations
  • 1 Introduction
  • 1.1 Introduction
  • 1.2 Bayesian Signal Processing
  • 1.3 Simulation-Based Approach to Bayesian Processing
  • 1.3.1 Bayesian Particle Filter
  • 1.4 Bayesian Model-Based Signal Processing
  • 1.5 Notation and Terminology
  • References
  • 2 Bayesian Estimation
  • 2.1 Introduction
  • 2.2 Batch Bayesian Estimation
  • 2.3 Batch Maximum Likelihood Estimation
  • 2.3.1 Expectation-Maximization Approach to Maximum Likelihood
  • 2.3.2 EM for Exponential Family of Distributions
  • 2.4 Batch Minimum Variance Estimation
  • 2.5 Sequential Bayesian Estimation
  • 2.5.1 Joint Posterior Estimation
  • 2.5.2 Filtering Posterior Estimation
  • 2.5.3 Likelihood Estimation
  • 2.6 Summary
  • References
  • 3 Simulation-Based Bayesian Methods
  • 3.1 Introduction
  • 3.2 Probability Density Function Estimation
  • 3.3 Sampling Theory
  • 3.3.1 Uniform Sampling Method
  • 3.3.2 Rejection Sampling Method
  • 3.4 Monte Carlo Approach
  • 3.4.1 Markov Chains
  • 3.4.2 Metropolis-Hastings Sampling
  • 3.4.3 Random Walk Metropolis-Hastings Sampling
  • 3.4.4 Gibbs Sampling
  • 3.4.5 Slice Sampling
  • 3.5 Importance Sampling
  • 3.6 Sequential Importance Sampling
  • 3.7 Summary
  • References
  • 4 State-Space Models for Bayesian Processing
  • 4.1 Introduction
  • 4.2 Continuous-Time State-Space Models
  • 4.3 Sampled-Data State-Space Models
  • 4.4 Discrete-Time State-Space Models
  • 4.4.1 Discrete Systems Theory
  • 4.5 Gauss-Markov State-Space Models
  • 4.5.1 Continuous-Time/Sampled-Data Gauss-Markov Models
  • 4.5.2 Discrete-Time Gauss-Markov Models
  • 4.6 Innovations Model
  • 4.7 State-Space Model Structures
  • 4.7.1 Time Series Models
  • 4.7.2 State-Space and Time Series Equivalence Models.
  • 4.8 Nonlinear (Approximate) Gauss-Markov State-Space Models
  • 4.9 Summary
  • References
  • 5 Classical Bayesian State-Space Processors
  • 5.1 Introduction
  • 5.2 Bayesian Approach to the State-Space
  • 5.3 Linear Bayesian Processor (Linear Kalman Filter)
  • 5.4 Linearized Bayesian Processor (Linearized Kalman Filter)
  • 5.5 Extended Bayesian Processor (Extended Kalman Filter)
  • 5.6 Iterated-Extended Bayesian Processor (Iterated-Extended Kalman Filter)
  • 5.7 Practical Aspects of Classical Bayesian Processors
  • 5.8 Case Study: RLC Circuit Problem
  • 5.9 Summary
  • References
  • 6 Modern Bayesian State-Space Processors
  • 6.1 Introduction
  • 6.2 Sigma-Point (Unscented) Transformations
  • 6.2.1 Statistical Linearization
  • 6.2.2 Sigma-Point Approach
  • 6.2.3 SPT for Gaussian Prior Distributions
  • 6.3 Sigma-Point Bayesian Processor (Unscented Kalman Filter)
  • 6.3.1 Extensions of the Sigma-Point Processor
  • 6.4 Quadrature Bayesian Processors
  • 6.5 Gaussian Sum (Mixture) Bayesian Processors
  • 6.6 Case Study: 2D-Tracking Problem
  • 6.7 Ensemble Bayesian Processors (Ensemble Kalman Filter)
  • 6.8 Summary
  • References
  • 7 Particle-Based Bayesian State-Space Processors
  • 7.1 Introduction
  • 7.2 Bayesian State-Space Particle Filters
  • 7.3 Importance Proposal Distributions
  • 7.3.1 Minimum Variance Importance Distribution
  • 7.3.2 Transition Prior Importance Distribution
  • 7.4 Resampling
  • 7.4.1 Multinomial Resampling
  • 7.4.2 Systematic Resampling
  • 7.4.3 Residual Resampling
  • 7.5 State-Space Particle Filtering Techniques
  • 7.5.1 Bootstrap Particle Filter
  • 7.5.2 Auxiliary Particle Filter
  • 7.5.3 Regularized Particle Filter
  • 7.5.4 MCMC Particle Filter
  • 7.5.5 Linearized Particle Filter
  • 7.6 Practical Aspects of Particle Filter Design
  • 7.6.1 Sanity Testing
  • 7.6.2 Ensemble Estimation
  • 7.6.3 Posterior Probability Validation.
  • 7.6.4 Model Validation Testing
  • 7.7 Case Study: Population Growth Problem
  • 7.8 Summary
  • References
  • 8 Joint Bayesian State/Parametric Processors
  • 8.1 Introduction
  • 8.2 Bayesian Approach to Joint State/Parameter Estimation
  • 8.3 Classical/Modern Joint Bayesian State/Parametric Processors
  • 8.3.1 Classical Joint Bayesian Processor
  • 8.3.2 Modern Joint Bayesian Processor
  • 8.4 Particle-Based Joint Bayesian State/Parametric Processors
  • 8.4.1 Parametric Models
  • 8.4.2 Joint Bayesian State/Parameter Estimation
  • 8.5 Case Study: Random Target Tracking Using a Synthetic Aperture Towed Array
  • 8.6 Summary
  • References
  • 9 Discrete Hidden Markov Model Bayesian Processors
  • 9.1 Introduction
  • 9.2 Hidden Markov Models
  • 9.2.1 Discrete-Time Markov Chains
  • 9.2.2 Hidden Markov Chains
  • 9.3 Properties of the Hidden Markov Model
  • 9.4 HMM Observation Probability: Evaluation Problem
  • 9.5 State Estimation in HMM: The Viterbi Technique
  • 9.5.1 Individual Hidden State Estimation
  • 9.5.2 Entire Hidden State Sequence Estimation
  • 9.6 Parameter Estimation in HMM: The EM/Baum-Welch Technique
  • 9.6.1 Parameter Estimation with State Sequence Known
  • 9.6.2 Parameter Estimation with State Sequence Unknown
  • 9.7 Case Study: Time-Reversal Decoding
  • 9.8 Summary
  • References
  • 10 Sequential Bayesian Detection
  • 10.1 Introduction
  • 10.2 Binary Detection Problem
  • 10.2.1 Classical Detection
  • 10.2.2 Bayesian Detection
  • 10.2.3 Composite Binary Detection
  • 10.3 Decision Criteria
  • 10.3.1 Probability-of-Error Criterion
  • 10.3.2 Bayes Risk Criterion
  • 10.3.3 Neyman-Pearson Criterion
  • 10.3.4 Multiple (Batch) Measurements
  • 10.3.5 Multichannel Measurements
  • 10.3.6 Multiple Hypotheses
  • 10.4 Performance Metrics
  • 10.4.1 Receiver Operating Characteristic (ROC) Curves
  • 10.5 Sequential Detection
  • 10.5.1 Sequential Decision Theory.
  • 10.6 Model-Based Sequential Detection
  • 10.6.1 Linear Gaussian Model-Based Processor
  • 10.6.2 Nonlinear Gaussian Model-Based Processor
  • 10.6.3 Non-Gaussian Model-Based Processor
  • 10.7 Model-Based Change (Anomaly) Detection
  • 10.7.1 Model-Based Detection
  • 10.7.2 Optimal Innovations Detection
  • 10.7.3 Practical Model-Based Change Detection
  • 10.8 Case Study: Reentry Vehicle Change Detection
  • 10.8.1 Simulation Results
  • 10.9 Summary
  • References
  • 11 Bayesian Processors for Physics-Based Applications
  • 11.1 Optimal Position Estimation for the Automatic Alignment
  • 11.1.1 Background
  • 11.1.2 Stochastic Modeling of Position Measurements
  • 11.1.3 Bayesian Position Estimation and Detection
  • 11.1.4 Application: Beam Line Data
  • 11.1.5 Results: Beam Line (KDP Deviation) Data
  • 11.1.6 Results: Anomaly Detection
  • 11.2 Sequential Detection of Broadband Ocean Acoustic Sources
  • 11.2.1 Background
  • 11.2.2 Broadband State-Space Ocean Acoustic Propagators
  • 11.2.3 Discrete Normal-Mode State-Space Representation
  • 11.2.4 Broadband Bayesian Processor
  • 11.2.5 Broadband Particle Filters
  • 11.2.6 Broadband Bootstrap Particle Filter
  • 11.2.7 Bayesian Performance Metrics
  • 11.2.8 Sequential Detection
  • 11.2.9 Broadband BSP Design
  • 11.2.10 Summary
  • 11.3 Bayesian Processing for Biothreats
  • 11.3.1 Background
  • 11.3.2 Parameter Estimation
  • 11.3.3 Bayesian Processor Design
  • 11.3.4 Results
  • 11.4 Bayesian Processing for the Detection of Radioactive Sources
  • 11.4.1 Physics-Based Processing Model
  • 11.4.2 Radionuclide Detection
  • 11.4.3 Implementation
  • 11.4.4 Detection
  • 11.4.5 Data
  • 11.4.6 Radionuclide Detection
  • 11.4.7 Summary
  • 11.5 Sequential Threat Detection: An X-ray Physics-Based Approach
  • 11.5.1 Physics-Based Models
  • 11.5.2 X-ray State-Space Simulation
  • 11.5.3 Sequential Threat Detection
  • 11.5.4 Summary.
  • 11.6 Adaptive Processing for Shallow Ocean Applications
  • 11.6.1 State-Space Propagator
  • 11.6.2 Processors
  • 11.6.3 Model-Based Ocean Acoustic Processing
  • 11.6.4 Summary
  • References
  • Appendix: Probability and Statistics Overview
  • A.1 Probability Theory
  • A.2 Gaussian Random Vectors
  • A.3 Uncorrelated Transformation: Gaussian Random Vectors
  • References
  • Index
  • Wiley Series on Adaptive and Cognitive Dynamic Systems
  • EULA.