Bayesian signal processing : classical, modern, and particle filtering methods /
Bayesian-based signal processing is expected to dominate the future of model-based signal processing for years to come. This book develops the 'Bayesian approach' to statistical signal processing for a variety of useful model sets with an emphasis on nonlinear/non-Gaussian problems, as wel...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons Inc.,
[2016]
|
Edición: | Second edition. |
Colección: | Wiley series on adaptive and cognitive dynamic systems.
Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control Ser. ; 54. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Bayesian Signal Processing
- Contents
- Preface to Second Edition
- References
- Preface to First Edition
- References
- Acknowledgments
- List of Abbreviations
- 1 Introduction
- 1.1 Introduction
- 1.2 Bayesian Signal Processing
- 1.3 Simulation-Based Approach to Bayesian Processing
- 1.3.1 Bayesian Particle Filter
- 1.4 Bayesian Model-Based Signal Processing
- 1.5 Notation and Terminology
- References
- 2 Bayesian Estimation
- 2.1 Introduction
- 2.2 Batch Bayesian Estimation
- 2.3 Batch Maximum Likelihood Estimation
- 2.3.1 Expectation-Maximization Approach to Maximum Likelihood
- 2.3.2 EM for Exponential Family of Distributions
- 2.4 Batch Minimum Variance Estimation
- 2.5 Sequential Bayesian Estimation
- 2.5.1 Joint Posterior Estimation
- 2.5.2 Filtering Posterior Estimation
- 2.5.3 Likelihood Estimation
- 2.6 Summary
- References
- 3 Simulation-Based Bayesian Methods
- 3.1 Introduction
- 3.2 Probability Density Function Estimation
- 3.3 Sampling Theory
- 3.3.1 Uniform Sampling Method
- 3.3.2 Rejection Sampling Method
- 3.4 Monte Carlo Approach
- 3.4.1 Markov Chains
- 3.4.2 Metropolis-Hastings Sampling
- 3.4.3 Random Walk Metropolis-Hastings Sampling
- 3.4.4 Gibbs Sampling
- 3.4.5 Slice Sampling
- 3.5 Importance Sampling
- 3.6 Sequential Importance Sampling
- 3.7 Summary
- References
- 4 State-Space Models for Bayesian Processing
- 4.1 Introduction
- 4.2 Continuous-Time State-Space Models
- 4.3 Sampled-Data State-Space Models
- 4.4 Discrete-Time State-Space Models
- 4.4.1 Discrete Systems Theory
- 4.5 Gauss-Markov State-Space Models
- 4.5.1 Continuous-Time/Sampled-Data Gauss-Markov Models
- 4.5.2 Discrete-Time Gauss-Markov Models
- 4.6 Innovations Model
- 4.7 State-Space Model Structures
- 4.7.1 Time Series Models
- 4.7.2 State-Space and Time Series Equivalence Models.
- 4.8 Nonlinear (Approximate) Gauss-Markov State-Space Models
- 4.9 Summary
- References
- 5 Classical Bayesian State-Space Processors
- 5.1 Introduction
- 5.2 Bayesian Approach to the State-Space
- 5.3 Linear Bayesian Processor (Linear Kalman Filter)
- 5.4 Linearized Bayesian Processor (Linearized Kalman Filter)
- 5.5 Extended Bayesian Processor (Extended Kalman Filter)
- 5.6 Iterated-Extended Bayesian Processor (Iterated-Extended Kalman Filter)
- 5.7 Practical Aspects of Classical Bayesian Processors
- 5.8 Case Study: RLC Circuit Problem
- 5.9 Summary
- References
- 6 Modern Bayesian State-Space Processors
- 6.1 Introduction
- 6.2 Sigma-Point (Unscented) Transformations
- 6.2.1 Statistical Linearization
- 6.2.2 Sigma-Point Approach
- 6.2.3 SPT for Gaussian Prior Distributions
- 6.3 Sigma-Point Bayesian Processor (Unscented Kalman Filter)
- 6.3.1 Extensions of the Sigma-Point Processor
- 6.4 Quadrature Bayesian Processors
- 6.5 Gaussian Sum (Mixture) Bayesian Processors
- 6.6 Case Study: 2D-Tracking Problem
- 6.7 Ensemble Bayesian Processors (Ensemble Kalman Filter)
- 6.8 Summary
- References
- 7 Particle-Based Bayesian State-Space Processors
- 7.1 Introduction
- 7.2 Bayesian State-Space Particle Filters
- 7.3 Importance Proposal Distributions
- 7.3.1 Minimum Variance Importance Distribution
- 7.3.2 Transition Prior Importance Distribution
- 7.4 Resampling
- 7.4.1 Multinomial Resampling
- 7.4.2 Systematic Resampling
- 7.4.3 Residual Resampling
- 7.5 State-Space Particle Filtering Techniques
- 7.5.1 Bootstrap Particle Filter
- 7.5.2 Auxiliary Particle Filter
- 7.5.3 Regularized Particle Filter
- 7.5.4 MCMC Particle Filter
- 7.5.5 Linearized Particle Filter
- 7.6 Practical Aspects of Particle Filter Design
- 7.6.1 Sanity Testing
- 7.6.2 Ensemble Estimation
- 7.6.3 Posterior Probability Validation.
- 7.6.4 Model Validation Testing
- 7.7 Case Study: Population Growth Problem
- 7.8 Summary
- References
- 8 Joint Bayesian State/Parametric Processors
- 8.1 Introduction
- 8.2 Bayesian Approach to Joint State/Parameter Estimation
- 8.3 Classical/Modern Joint Bayesian State/Parametric Processors
- 8.3.1 Classical Joint Bayesian Processor
- 8.3.2 Modern Joint Bayesian Processor
- 8.4 Particle-Based Joint Bayesian State/Parametric Processors
- 8.4.1 Parametric Models
- 8.4.2 Joint Bayesian State/Parameter Estimation
- 8.5 Case Study: Random Target Tracking Using a Synthetic Aperture Towed Array
- 8.6 Summary
- References
- 9 Discrete Hidden Markov Model Bayesian Processors
- 9.1 Introduction
- 9.2 Hidden Markov Models
- 9.2.1 Discrete-Time Markov Chains
- 9.2.2 Hidden Markov Chains
- 9.3 Properties of the Hidden Markov Model
- 9.4 HMM Observation Probability: Evaluation Problem
- 9.5 State Estimation in HMM: The Viterbi Technique
- 9.5.1 Individual Hidden State Estimation
- 9.5.2 Entire Hidden State Sequence Estimation
- 9.6 Parameter Estimation in HMM: The EM/Baum-Welch Technique
- 9.6.1 Parameter Estimation with State Sequence Known
- 9.6.2 Parameter Estimation with State Sequence Unknown
- 9.7 Case Study: Time-Reversal Decoding
- 9.8 Summary
- References
- 10 Sequential Bayesian Detection
- 10.1 Introduction
- 10.2 Binary Detection Problem
- 10.2.1 Classical Detection
- 10.2.2 Bayesian Detection
- 10.2.3 Composite Binary Detection
- 10.3 Decision Criteria
- 10.3.1 Probability-of-Error Criterion
- 10.3.2 Bayes Risk Criterion
- 10.3.3 Neyman-Pearson Criterion
- 10.3.4 Multiple (Batch) Measurements
- 10.3.5 Multichannel Measurements
- 10.3.6 Multiple Hypotheses
- 10.4 Performance Metrics
- 10.4.1 Receiver Operating Characteristic (ROC) Curves
- 10.5 Sequential Detection
- 10.5.1 Sequential Decision Theory.
- 10.6 Model-Based Sequential Detection
- 10.6.1 Linear Gaussian Model-Based Processor
- 10.6.2 Nonlinear Gaussian Model-Based Processor
- 10.6.3 Non-Gaussian Model-Based Processor
- 10.7 Model-Based Change (Anomaly) Detection
- 10.7.1 Model-Based Detection
- 10.7.2 Optimal Innovations Detection
- 10.7.3 Practical Model-Based Change Detection
- 10.8 Case Study: Reentry Vehicle Change Detection
- 10.8.1 Simulation Results
- 10.9 Summary
- References
- 11 Bayesian Processors for Physics-Based Applications
- 11.1 Optimal Position Estimation for the Automatic Alignment
- 11.1.1 Background
- 11.1.2 Stochastic Modeling of Position Measurements
- 11.1.3 Bayesian Position Estimation and Detection
- 11.1.4 Application: Beam Line Data
- 11.1.5 Results: Beam Line (KDP Deviation) Data
- 11.1.6 Results: Anomaly Detection
- 11.2 Sequential Detection of Broadband Ocean Acoustic Sources
- 11.2.1 Background
- 11.2.2 Broadband State-Space Ocean Acoustic Propagators
- 11.2.3 Discrete Normal-Mode State-Space Representation
- 11.2.4 Broadband Bayesian Processor
- 11.2.5 Broadband Particle Filters
- 11.2.6 Broadband Bootstrap Particle Filter
- 11.2.7 Bayesian Performance Metrics
- 11.2.8 Sequential Detection
- 11.2.9 Broadband BSP Design
- 11.2.10 Summary
- 11.3 Bayesian Processing for Biothreats
- 11.3.1 Background
- 11.3.2 Parameter Estimation
- 11.3.3 Bayesian Processor Design
- 11.3.4 Results
- 11.4 Bayesian Processing for the Detection of Radioactive Sources
- 11.4.1 Physics-Based Processing Model
- 11.4.2 Radionuclide Detection
- 11.4.3 Implementation
- 11.4.4 Detection
- 11.4.5 Data
- 11.4.6 Radionuclide Detection
- 11.4.7 Summary
- 11.5 Sequential Threat Detection: An X-ray Physics-Based Approach
- 11.5.1 Physics-Based Models
- 11.5.2 X-ray State-Space Simulation
- 11.5.3 Sequential Threat Detection
- 11.5.4 Summary.
- 11.6 Adaptive Processing for Shallow Ocean Applications
- 11.6.1 State-Space Propagator
- 11.6.2 Processors
- 11.6.3 Model-Based Ocean Acoustic Processing
- 11.6.4 Summary
- References
- Appendix: Probability and Statistics Overview
- A.1 Probability Theory
- A.2 Gaussian Random Vectors
- A.3 Uncorrelated Transformation: Gaussian Random Vectors
- References
- Index
- Wiley Series on Adaptive and Cognitive Dynamic Systems
- EULA.