Cargando…

Design and analysis of large lithium-Ion battery systems /

This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Santhanagopalan, Shriram (Autor), Kim, Gi-Heon (Autor), Keyers, Matthew (Autor), Pesaran, Ahmad A. (Autor), Smith, Kandler (Autor), Neubauer, Jeremy (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Artech House, 2015.
Colección:Artech House power engineering series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; Chapter 1 Types of Batteries; 1.1 Lead Acid Batteries; 1.2 Nickel-Based Batteries; 1.3 Sodium Beta Batteries; 1.3.1 Sodium Sulfur Batteries; 1.3.2 Metal Chloride Batteries; 1.3.3 Challenges and Future Work; 1.4 Flow Batteries; 1.4.1 Redox Flow Batteries; 1.4.2 Hybrid-Flow Batteries; 1.4.3 Challenges and Future Work; 1.5 Li-Ion Batteries; 1.5.1 Lithium-Ion Cathodes; 1.5.2 Lithium-Ion Anodes; 1.5.3 Li-Ion Electrolytes; 1.5.4 Li-Ion Challenges and Future Work; 1.6 Lithium-Sulfur Batteries; 1.6.1 Lithium-Sulfur Cathodes; 1.6.2 Lithium-Sulfur Anode.
  • 1.6.3 Challenges and Future Work1.7 Metal-Air Batteries; 1.7.1 Zinc-Air Batteries; 1.7.2 Lithium-Air Batteries; 1.7.3 Challenges and Future Work; 1.8 Emerging Chemistries; 1.8.1 Sodium-Ion Batteries; 1.8.2 Liquid Metal; Chapter 2 Electrical Performance; 2.1 Thermodynamics Inside a Battery; 2.2 Assembling a Li-Ion Cell; 2.3 Voltage Dynamics during Charge/Discharge; 2.4 Circuit Diagram for a Cell; 2.5 Electrochemical Models for Cell Design; 2.5.1 Charge Transport within the Electrode by Electrons; 2.5.2 Charge Transport in the Electrolyte by Ions.
  • 2.5.3 Charge Transfer between the Electrodes and the Electrolyte2.5.4 Distribution of Ions; 2.6 Electrical Characterization of Li-Io Batteries; 2.6.1 Capacity Measurement; 2.6.2 Power Measurement; 2.6.3 Component Characterization; References; Chapter 3 Thermal Behavior; 3.1 Heat Generation in a Battery; 3.1.1 Heat Generation from Joule Heating; 3.1.2 Heat Generation from Electrode Reactions; 3.1.3 Entropic Heat Generation; 3.2 Experimental Measurement of Thermal Parameters; 3.2.1 Isothermal Battery Calorimeters; 3.2.2 Basic IBC Operation; 3.2.3 Typical Applications for an IBC.
  • 3.3 Differential Scanning Calorimeters3.3.1 Differential Scanning Calorimeters and Batteries; 3.4 Infrared Imaging; 3.4.1 Origin of Thermal Energy; 3.4.2 Calibration and Error; 3.4.3 Imaging Battery Systems; 3.5 Desired Attributes of a Thermal Management System; 3.5.1 Designing a Battery Thermal Management System; 3.5.2 Optimization; 3.6 Conclusions; References; Chapter 4 Battery Life; 4.1 Overview; 4.1.1 Physics; 4.1.2 Calendar Life Versus Cycle Life; 4.1.3 Regions of Performance Fade; 4.1.4 End of Life; 4.1.5 Extending Cell Life Prediction to Pack Level.
  • 4.1.6 Fade Mechanisms in Electrochemical Cells4.1.7 Common Degradation Mechanisms in Li-Ion Cells; 4.2 Modeling ; 4.2.1 Physics-Based; 4.2.2 Semiempirical Models; 4.3 Testing ; 4.3.1 Screening/Benchmarking Tests; 4.3.2 Design of Experiments; 4.3.3 RPTs; 4.3.4 Other Diagnostic Tests; References; Chapter 5 Battery Safety; 5.1 Safety Concerns in Li-Ion Batteries; 5.1.1 Electrical Failure; 5.1.2 Thermal Failure; 5.1.3 Electrochemical Failure; 5.1.4 Mechanical Failure; 5.1.5 Chemical Failure; 5.2 Modeling Insights on Li-Ion Battery Safety; 5.2.1 Challenges with Localized Failure.