|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_ocn944442787 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
160314t20152016njua ob 001 0 eng d |
040 |
|
|
|a KNOVL
|b eng
|e rda
|e pn
|c KNOVL
|d OCLCO
|d YDXCP
|d UIU
|d STF
|d OCLCF
|d OCLCO
|d BUF
|d OCLCO
|d VT2
|d OCLCQ
|d OTZ
|d REB
|d CEF
|d RRP
|d OCLCQ
|d INT
|d CAUOI
|d AU@
|d OCLCQ
|d WYU
|d OCLCQ
|d ERF
|d OCLCO
|d OCLCQ
|d UPM
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 959910070
|a 961849249
|a 988653843
|a 999410350
|a 1026450870
|a 1066570636
|
020 |
|
|
|a 9781523101016
|q (electronic bk.)
|
020 |
|
|
|a 1523101016
|q (electronic bk.)
|
020 |
|
|
|a 9781613530375
|q (PDF)
|
020 |
|
|
|a 1613530374
|q (PDF)
|
020 |
|
|
|z 9781613530160
|
020 |
|
|
|z 1613530161
|
029 |
1 |
|
|a AU@
|b 000057279854
|
029 |
1 |
|
|a GBVCP
|b 870366815
|
035 |
|
|
|a (OCoLC)944442787
|z (OCoLC)959910070
|z (OCoLC)961849249
|z (OCoLC)988653843
|z (OCoLC)999410350
|z (OCoLC)1026450870
|z (OCoLC)1066570636
|
050 |
|
4 |
|a QC665.E4
|b G73 2015eb
|
082 |
0 |
4 |
|a 530.141
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Graglia, Roberto D.,
|e author.
|
245 |
1 |
0 |
|a Higher-order techniques in computational electromagnetics /
|c Roberto D. Graglia, Andrew F. Peterson.
|
264 |
|
1 |
|a Edison, NJ :
|b SciTech Publishing,
|c 2015.
|
264 |
|
4 |
|c ©2016
|
300 |
|
|
|a 1 online resource (xv, 392 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mario Boella series on electromagnetism in information & communication
|
504 |
|
|
|a Includes bibliographical references (pages 378-379) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The book reviews developments in the following fields: interpolation, approximation, and error in one dimension; scalar interpolation in two and three dimensions; representation of vector fields in two and three dimensions using low-degree polynomials; interpolatory vector bases of arbitrary order; hierarchical bases; the numerical solution of integral and differential equations and an introduction to high-order bases for singular fields.
|
505 |
0 |
|
|a Machine generated contents note: 1. Interpolation, Approximation, and Error in One Dimension -- 1.1. Linear Interpolation and Triangular Basis Functions -- 1.2. Interpolation and Basis Functions of Higher Polynomial Order -- 1.2.1. Lagrange Interpolation -- 1.2.2. Hermite Interpolation -- 1.3. Error in the Representation of Functions -- 1.3.1. Interpolation Error -- 1.3.2. Spectral Integrity and Other Frequency Domain Considerations -- 1.4. Approximation of Functions with Border Singularities -- 1.4.1. Singular Expansion Functions -- 1.4.2. Singular Functions that Comply with Exact Approximations in Terms of Singular Plus Polynomial Basis Functions -- 1.4.3. Singular Functions that Do Not Permit Exact Approximations in Terms of Singular Plus Polynomial Basis Functions -- 1.5. Summary -- References -- 2. Scalar Interpolation in Two and Three Dimensions -- 2.1. Two- and Three-Dimensional Meshes and Canonical Cells -- 2.1.1. Conforming Meshes and Fundamentals of Geometrical Database Structure
|
505 |
0 |
|
|a Note continued: 2.2. Interpolatory Polynomials of Silvester -- 2.3. Normalized Coordinates for the Canonical Cells -- 2.4. Triangular Cells -- 2.4.1. Cell Geometry Representation and Local Vector Bases -- 2.4.2. Lagrangian Basis Functions, Interpolation, and Gradient Approximation -- 2.4.3. Interpolation Error -- 2.4.4. Spectral Integrity and Other Frequency Domain Considerations -- 2.4.5. Curved Cells -- 2.5. Quadrilateral Cells -- 2.5.1. Cell Geometry Representation and Local Vector Bases -- 2.5.2. Lagrangian Basis Functions, Interpolation, and Gradient Approximation -- 2.6. Tetrahedral Cells -- 2.6.1. Cell Geometry Representation and Local Vector Bases -- 2.6.2. Lagrangian Basis Functions -- 2.7. Brick Cells -- 2.7.1. Cell Geometry Representation and Local Vector Bases -- 2.7.2. Lagrangian Basis Functions -- 2.8. Triangular Prism Cells -- 2.8.1. Cell Geometry Representation and Local Vector Bases -- 2.8.2. Lagrangian Basis Functions -- 2.9. Generation of Shape Functions -- References
|
505 |
0 |
|
|a Note continued: 3. Representation of Vector Fields in Two and Three Dimensions Using Low-Degree Polynomials -- 3.1. Two-Dimensional Vector Functions on Triangles -- 3.1.1. Linear Curl-Conforming Vector Basis Functions -- 3.1.2.A Simpler Curl-Conforming Representation on Triangles -- 3.1.3. Alternate Approach: A Divergence-Conforming Representation on Triangles -- 3.2. Tangential-Vector versus Normal-Vector Continuity: Curl-Conforming and Divergence-Conforming Bases -- 3.2.1. Additional Terminology -- 3.3. Two-Dimensional Representations on Rectangular Cells -- 3.4. Quasi-Helmholtz Decomposition in 2D: Loop and Star Functions -- 3.5. Projecting between Curl-Conforming and Divergence-Conforming Bases -- 3.6. Three-Dimensional Representation on Tetrahedral Cells: Curl-Conforming Bases -- 3.7. Three-Dimensional Representation on Tetrahedral Cells: Divergence-Conforming Bases -- 3.8. Three-Dimensional Expansion on Brick Cells: Curl-Conforming Case
|
505 |
0 |
|
|a Note continued: 3.9. Divergence-Conforming Bases on Brick Cells -- 3.10. Quasi-Helmholtz Decomposition on Tetrahedral Meshes -- 3.11. Vector Basis Functions on Skewed Meshes or Meshes with Curved Cells -- 3.11.1. Base and Reciprocal Base Vectors -- 3.11.2. Covariant and Contravariant Projections -- 3.11.3. Derivatives in the Parent Space -- 3.11.4. Restriction to Surfaces -- 3.11.5. Example: Quadrilateral Cells -- 3.12. The Mixed-Order Nedelec Spaces -- 3.13. The De Rham Complex -- 3.14. Conclusion -- References -- 4. Interpolatory Vector Bases of Arbitrary Order -- 4.1. Development of Vector Bases -- 4.2. The Construction of Vector Bases -- 4.3. Zeroth-Order Vector Bases for the Canonical 2D Cells -- 4.4. Zeroth-Order Vector Bases for the Canonical 3D Cells -- 4.5. The High-Order Vector Basis Construction Method -- 4.5.1.Completeness of the High-Order Vector Bases for 2D Cells -- 4.5.2.Completeness of the High-Order Vector Bases for 3D Cells
|
505 |
0 |
|
|a Note continued: 5.3.2. Quadrilateral and Brick Bases -- 5.3.3. Prism Bases -- 5.3.4. Condition Number Comparison -- 5.4. Hierarchical Divergence-Conforming Vector Bases -- 5.4.1. Reference Variables on the Face in Common to Adjacent Cells -- 5.4.2. Tetrahedral Bases -- 5.4.3. Prism Bases -- 5.4.4. Brick Bases -- 5.4.5. Numerical Results and Comparisons with Other Bases -- 5.5. Conclusion -- References -- 6. The Numerical Solution of Integral and Differential Equations -- 6.1. The Electric Field Integral Equation -- 6.2. Incorporation of Curved Cells -- 6.3. Treatment of the Singularity of the Green's Function by Singularity Subtraction and Cancellation Techniques -- 6.4. Examples: Scattering Cross Section Calculations -- 6.5. The Vector Helmholtz Equation -- 6.6. Numerical Solution of the Vector Helmholtz Equation for Cavities -- 6.7. Avoiding Spurious Modes with Adaptive p-Refinement and Hierarchical Bases -- 6.8. Use of Curved Cells with Curl-Conforming Bases
|
505 |
0 |
|
|a Note continued: 6.9. Application: Scattering from Deep Cavities -- 6.10. Summary -- References -- 7. An Introduction to High-Order Bases for Singular Fields -- 7.1. Field Singularities at Edges -- 7.2. Triangular-Polar Coordinate Transformation -- 7.3. Singular Scalar Basis Functions for Triangles -- 7.3.1. Lowest Order Bases of the Substitutive Type -- 7.3.2. Higher Order Bases of the Substitutive Type -- 7.3.3. Additive Singular Basis Functions -- 7.3.4. The Irrational Algebraic Scalar Basis Functions -- 7.3.5. Example: Quadratic Basis with One Singular Degree -- 7.3.6. Example: Cubic Basis with Two Singular Degrees -- 7.3.7. Evaluation of Integrals of Singular Bases -- 7.4. Numerical Results for Scalar Bases -- 7.4.1. Eigenvalues of Waveguiding Structures with Edges -- 7.4.2. Effect of Varying the Number of Radial and Azimuthal Terms -- 7.5. Singular Vector Basis Functions for Triangles -- 7.5.1. Substitutive Curl-Conforming Vector Bases
|
505 |
0 |
|
|a Note continued: 7.5.2. Additive Curl-Conforming Vector Bases -- 7.6. Singular Hierarchical Meixner Basis Sets -- 7.6.1. The Singularity Coefficients -- 7.6.2. Auxiliary Functions -- 7.6.3. Representation of Singular Fields -- 7.6.4. Singular Scalar Bases -- 7.6.5. Singular Static Vector Bases -- 7.6.6. Singular Non-Static Vector Bases -- 7.6.7. Numerical Evaluation of the Radial Functions Rn and Sn -- 7.6.8. Example: p = 1.5 Basis with One Singular Exponent -- 7.6.9. Example: p = 2.5 Basis with Two Singular Exponents -- 7.7. Numerical Results -- 7.8. Numerical Results for Inhomogeneous Waveguiding Structures Containing Corners -- 7.9. Numerical Results for Thin Metallic Plates with Knife-Edge Singularities -- 7.10. Conclusion -- References.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Electronics & Semiconductors
|
650 |
|
0 |
|a Electromagnetic fields
|x Measurement.
|
650 |
|
0 |
|a Electromagnetic fields
|x Mathematics.
|
650 |
|
6 |
|a Champs électromagnétiques
|x Mathématiques.
|
650 |
|
7 |
|a Electromagnetic fields
|x Mathematics.
|2 fast
|0 (OCoLC)fst00906535
|
650 |
|
7 |
|a Electromagnetic fields
|x Measurement.
|2 fast
|0 (OCoLC)fst00906536
|
650 |
|
7 |
|a difference equations.
|2 inspect
|
650 |
|
7 |
|a integral equations.
|2 inspect
|
650 |
|
7 |
|a interpolation.
|2 inspect
|
650 |
|
7 |
|a polynomials.
|2 inspect
|
700 |
1 |
|
|a Peterson, Andrew F.,
|d 1960-
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Graglia, Roberto D.
|t Higher-order techniques in computational electromagnetics
|z 9781613530160
|w (OCoLC)939744634
|
830 |
|
0 |
|a Mario Boella series on electromagnetism in information & communication.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpHOTCE001/toc
|z Texto completo
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12802150
|
994 |
|
|
|a 92
|b IZTAP
|