Cargando…

Sustainable energy from salinity gradients /

Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Effic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Cipollina, Ana (Editor ), Micale, Giorgio (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier/Woodhead Publishing, [2016]
Colección:Woodhead Publishing in energy ; no. 95.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_ocn942588149
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu|||unuuu
008 160302t20162016ne ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d YDXCP  |d N$T  |d CDX  |d OPELS  |d COO  |d OCLCF  |d KNOVL  |d EBLCP  |d UPM  |d DEBSZ  |d LIP  |d OCLCQ  |d U3W  |d BUF  |d D6H  |d RRP  |d OCLCQ  |d WYU  |d LQU  |d ERF  |d UKMGB  |d OCLCQ  |d BRF  |d LVT  |d VT2  |d ERD  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB636487  |2 bnb 
016 7 |a 017768158  |2 Uk 
019 |a 945612141  |a 1066438706  |a 1105189657  |a 1105567566  |a 1229872694  |a 1235835423 
020 |a 9780081003237  |q (electronic bk.) 
020 |a 0081003234  |q (electronic bk.) 
020 |z 0081003129 
020 |z 9780081003121 
029 1 |a AU@  |b 000059396688 
029 1 |a CHNEW  |b 001013440 
029 1 |a DEBSZ  |b 482469560 
029 1 |a GBVCP  |b 870368559 
029 1 |a GBVCP  |b 879392290 
029 1 |a UKMGB  |b 017768158 
035 |a (OCoLC)942588149  |z (OCoLC)945612141  |z (OCoLC)1066438706  |z (OCoLC)1105189657  |z (OCoLC)1105567566  |z (OCoLC)1229872694  |z (OCoLC)1235835423 
037 |a 9780081003237  |b Ingram Content Group 
050 4 |a TJ808 
072 7 |a BUS  |x 054000  |2 bisacsh 
082 0 4 |a 333.794  |2 23 
049 |a UAMI 
245 0 0 |a Sustainable energy from salinity gradients /  |c edited by Andrea Cipollina and Giorgio Micale. 
264 1 |a Amsterdam :  |b Elsevier/Woodhead Publishing,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Woodhead Publishing series in energy ;  |v number 95 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed March 9, 2016). 
520 |a Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. ïÅưKey technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. ïÅưSustainable Energy from Salinity Gradients is an essential text for R & D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis.ïÅư. 
505 0 |a Front Cover; Sustainable Energy from Salinity Gradients; Copyright; Contents; List of contributors; Preface; Woodhead Publishing Series in Energy; Chapter 1: Salinity gradient energy; 1.1. Some history on salinity gradient energy technologies; 1.2. Theoretical analysis of world potentials for SGE technologies; 1.3. Classification of SGP technologies; 1.4. Outline of chapters; References; Chapter 2: Pressure retarded osmosis: Fundamentals; 2.1. About the osmotic energy; 2.2. Pressure retarded osmosis process; 2.2.1. Different osmotic processes; 2.2.2. Power generation by the PRO process. 
505 8 |a 2.2.3. Mass transfer across the PRO membranes2.2.4. Thermodynamic limits of the PRO process; 2.3. Membranes for PRO; 2.3.1. Fabrication methods for polymeric PRO membranes; 2.3.2. Early PRO studies using reverse osmosis (RO)/nanofiltration (NF) membranes; 2.3.3. PRO performances of the conventional FO membranes; 2.3.4. TFC-PRO flat-sheet membranes; 2.3.5. PRO hollow fibre membranes; 2.3.5.1. Integrally skinned PRO hollow fibre membranes; 2.3.5.2. TFC-PRO hollow fibre membranes; 2.3.6. Laboratory characterizations of the PRO membranes. 
505 8 |a 2.4. Fouling in the PRO process and antifouling PRO membranes2.4.1. Fouling and cleaning in the PRO processes; 2.4.2. Antifouling membranes; 2.5. R & D perspectives; 2.5.1. Membranes; 2.5.2. Spacer design; 2.5.3. Antifouling strategies; 2.5.4. Pilot studies employing realistic feed and high salinity sources; Acknowledgements; References; Chapter 3: Pressure retarded osmosis: Applications; 3.1. Introduction; 3.2. Typical layout of PRO plants; 3.2.1. PRO facility components; 3.3. Feed possibilities of PRO units; 3.3.1. River water-seawater; 3.3.2. Freshwater-RO brine. 
505 8 |a 3.3.3. Closed-loop PRO options3.4. Core aspects in PRO systems; 3.4.1. PRO membranes and membrane modules; 3.4.2. Process performance parameters; 3.5. Practical experiences in PRO piloting; 3.6. Perspectives for R & D and industrial development; References; Chapter 4: Reverse electrodialysis; 4.1. Introduction; 4.1.1. The early years, 1890-2000; 4.1.2. The modern time, 2000-2015; 4.1.2.1. Upscaling the RED process; 4.1.3. New RED-related applications; 4.1.3.1. Capacitive mixing; 4.1.3.2. Integrated systems; 4.1.3.3. Integrated closed systems; 4.1.3.4. Hybrid systems; 4.1.3.5. Nano systems. 
505 8 |a 4.2. Membranes for RED4.2.1. Principle; 4.2.2. Classification; 4.2.2.1. CEM, AEM, bipolar, and mosaic; 4.2.2.2. Strong and weak exchanging groups; 4.2.2.3. Monovalent selective membranes; 4.2.2.4. Special outer membranes; 4.2.2.5. Profiled or corrugated membranes; 4.2.3. Donnan exclusion; 4.2.4. The membrane-solution interface phenomena; 4.2.5. Membrane properties and characterization; 4.2.5.1. Ion exchange capacity; 4.2.5.2. Swelling degree; 4.2.5.3. The electromotive force and permselectivity; 4.2.5.4. Membrane resistance; 4.2.6. Multivalent ions; 4.3. The RED process. 
590 |a Knovel  |b ACADEMIC - Sustainable Energy & Development 
650 0 |a Renewable energy sources. 
650 6 |a Énergies renouvelables. 
650 7 |a BUSINESS & ECONOMICS  |x Real Estate  |x General.  |2 bisacsh 
650 7 |a Renewable energy sources  |2 fast 
700 1 |a Cipollina, Ana,  |e editor. 
700 1 |a Micale, Giorgio,  |e editor. 
776 0 8 |i Print version:  |t Sustainable energy from salinity gradients.  |d Amsterdam, [Netherlands] : Woodhead Publishing, ©2016  |h 343 pages  |k Woodhead Publishing in energy ; Number 95  |z 9780081003121 
830 0 |a Woodhead Publishing in energy ;  |v no. 95. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpSESG0002/toc  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 34099341 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4425974 
938 |a EBSCOhost  |b EBSC  |n 1144484 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34099341 
938 |a YBP Library Services  |b YANK  |n 12872534 
994 |a 92  |b IZTAP