Cargando…

Acoustics, aeroacoustics and vibrations /

This didactic book presents the main elements of acoustics, aeroacoustics and vibrations. Illustrated with numerous concrete examples linked to solid and fluid continua, Acoustics, Aeroacoustics and Vibrations proposes a selection of applications encountered in the three fields, whether in room acou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Anselmet, Fabien (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley and Sons, Inc., 2016.
Colección:Waves series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Chapter 1: A Bit of History
  • 1.1. The production of sound
  • 1.2. The propagation of sound
  • 1.3. The reception of sound
  • 1.4. Aeroacoustics
  • Chapter 2: Elements of Continuum Mechanics
  • 2.1. Mechanics of deformable media
  • 2.1.1. Continuum
  • 2.1.2. Kinematics of deformable media
  • 2.1.2.1. Lagrange's kinematics
  • 2.1.2.2. Euler's kinematics
  • 2.1.2.3. Kinematics of a surface
  • 2.1.2.4. Material derivatives
  • 2.1.3. Deformation tensor (or Green's tensor)
  • 2.2. Conservation laws
  • 2.2.1. Conservation of mass
  • 2.2.2. Conservation of momentum
  • 2.2.3. Conservation of energy
  • 2.3. Constitutive laws
  • 2.3.1. Elasticity
  • 2.3.1.1. Stress-deformation tensor
  • 2.3.1.2. Infinitesimal strain tensor
  • 2.3.2. Thermoelasticity and effects of temperature variations
  • 2.3.3. Viscoelasticity
  • 2.3.3.1. Partial differential operator
  • 2.3.3.1.1. Elementary models
  • 2.3.3.2. Convolution operator
  • 2.3.4. Fluid medium
  • 2.4. Hamilton principle
  • 2.5. Characteristics of materials
  • Chapter 3: Small Mathematics Travel Kit
  • 3.1. Measure theory and Lebesgue integration
  • 3.1.1. Boolean algebra
  • 3.1.2. Measure on a v-algebra
  • 3.1.3. Convergence and integration of measurable functions
  • 3.1.4. Functional space
  • functional
  • 3.1.5. Measure as linear functional
  • 3.2. Distributions
  • 3.2.1. The space D of test functions
  • 3.2.2. Distributions definition
  • 3.2.3. Operations on distributions
  • 3.2.4. N-dimensional generalization
  • 3.2.5. Distributions tensor product
  • 3.3. Convolution
  • 3.3.1. Definition and first properties
  • 3.3.2. Convolution algebra and Green's function
  • 3.4. Modal methods
  • 3.4.1. Eigenmodes of a conservative system
  • 3.4.2. Eigenmodes of a non-conservative system
  • 3.4.2.1. Eigenmodes-resonance modes.
  • 3.4.2.2. Series expansion of resonance modes
  • 3.4.2.3. Damped beam
  • 3.4.2.4. Eigenmodes and resonance modes
  • 3.4.2.4.1. Norm and scalar product
  • Chapter 4: Fluid Acoustics
  • 4.1. Acoustics equations
  • 4.1.1. Conservation equations
  • 4.1.2. Establishment of general equations
  • 4.1.3. Establishment of the wave equation
  • 4.1.4. Velocity potential
  • 4.2. Propagation and general solutions
  • 4.2.1. One-dimensional motion
  • 4.2.2. Three-dimensional motion
  • 4.3. Permanent regime: Helmholtz equation
  • 4.3.1. General solutions
  • 4.3.1.1. One-dimensional motion
  • 4.3.1.2. Two-dimensional motion
  • 4.3.1.3. Three-dimensional motion
  • 4.3.1.4. Acoustic intensity
  • 4.3.2. Green's kernels
  • 4.3.3. Wave group, phase velocity and group velocity
  • 4.4. Discontinuity equations
  • 4.4.1. Interface between two propagating media
  • 4.4.2. Interface between a propagating and a non-propagating medium
  • 4.5. Impedance: measurement and model
  • 4.5.1. Kundt's tube
  • 4.5.2. Delany-Bazley model
  • 4.6. Homogeneous anisotropic medium
  • 4.7. Medium with a slowly varying celerity
  • 4.8. Media in motion
  • 4.8.1. Homogeneous medium in uniform motion
  • 4.8.1.1. Continuity condition for normal displacements
  • 4.8.1.2. Green's kernel
  • 4.8.2. Plane interface between media in motion
  • 4.8.3. Cylindrical interface between media in motion
  • 4.8.4. Acoustic radiation of a moving surface
  • 4.8.4.1. Geometry and notations
  • 4.8.4.2. Equation for wave propagation on the outside of the moving surface
  • 4.8.4.3. Green's representation for a sheared jet
  • 4.8.4.4. Acoustic field radiated by the cylinder
  • 4.8.4.5. Pipe directivity
  • 4.8.4.6. Results
  • Chapter 5: Radiation, Diffraction, Enclosed Space
  • 5.1. Acoustic radiation
  • 5.1.1. A simple example
  • 5.2. Acoustic radiation of point sources
  • 5.2.1. Multipolar sources in a harmonic regime.
  • 5.2.2. Far-field
  • 5.3. Radiation of distributed sources
  • 5.3.1. Layer potentials
  • 5.3.1.1. Simple layer potential
  • 5.3.1.2. Double layer potential
  • 5.3.2. Green's representation of pressure and introduction to the theory of diffraction
  • 5.3.2.1. Green's formula
  • 5.3.2.2. Green's representation
  • 5.3.2.3. Solving integral equations
  • 5.4. Acoustic radiation of a piston in a plane
  • 5.4.1. Far-field radiation of a circular piston: directivity
  • 5.4.2. Radiation along the axis of a circular piston
  • 5.5. Acoustic radiation of a rectangular baffled structure
  • 5.6. Acoustic radiation of moving sources
  • 5.6.1. Compact and non-compact sources
  • 5.6.1.1. Spatially compact source
  • 5.6.1.2. Spatially non-compact source (M » 1)
  • 5.6.1.3. The case of the flow source
  • 5.6.2. Sources in uniform and non-uniform motion
  • 5.6.2.1. Doppler effect
  • 5.6.2.2. Shock waves
  • 5.7. Sound propagation in a bounded medium
  • 5.7.1. Eigenfrequencies and resonance frequencies
  • 5.7.2. The Helmholtz resonator
  • 5.7.3. Example in dimension 1
  • 5.7.4. Example in dimension 3
  • 5.7.5. Propagation of pure sound in a circular enclosure
  • 5.7.5.1. Direct integration methods
  • 5.7.5.1.1. Separation of variables
  • 5.7.5.1.2. Direct integration
  • 5.7.5.2. Method of integration by integral equations
  • 5.7.5.2.1. Green's representation
  • 5.8. Basics of room acoustics
  • 5.8.1. The concept of acoustic power
  • 5.8.2. Directivity index
  • 5.8.3. Reverberation duration
  • 5.8.4. Reverberant fields
  • 5.8.5. Pressure level in rooms
  • 5.8.6. Crossover frequency and the reverberation distance
  • 5.9. Sound propagation in a wave guide
  • 5.9.1. General solution in a wave guide
  • 5.9.2. Physical interpretation and theory of modes
  • 5.9.2.1. Modal basis
  • 5.9.2.2. Guide with a circular section
  • 5.9.2.3. Elements of the modal theory of wave guides.
  • 5.9.3. Green's function
  • 5.9.4. Section change
  • 5.9.4.1. Discontinuous variation
  • 5.9.4.2. Continuous variation: pavilions
  • 5.9.5. Propagation in a conduit in the presence of flow
  • Chapter 6: Wave Propagation in Elastic Media
  • 6.1. Equation of mechanical wave propagation
  • 6.2. Free waves
  • 6.2.1. Volumic waves
  • 6.2.2. Plane wave case
  • 6.2.3. Surface waves
  • 6.2.3.1. Rayleigh waves
  • 6.2.3.2. Scholte-Stoneley waves
  • 6.2.3.3. Love waves
  • 6.3. Green's kernels in a harmonic regime
  • 6.4. Thin body approximation for plannar structures
  • 6.4.1. Straight beams
  • 6.4.1.1. Displacement field
  • 6.4.1.2. Beam operator
  • 6.4.1.2.1. Longitudinal vibrations (compression)
  • 6.4.1.2.2. Weak formulation of the problem
  • 6.4.1.2.3. Transverse vibrations (bending)
  • 6.4.1.2.4. Weak formulation of the problem
  • 6.4.2. Plane plates
  • 6.4.2.1. Displacement field
  • 6.4.2.2. Plate operator
  • 6.4.2.3. Harmonic regime
  • 6.5. Thin body approximation for cylindrical structures
  • 6.5.1. Cylinder
  • 6.5.1.1. Displacement field
  • 6.5.1.2. Thin shell operators
  • 6.5.1.3. Elastic potential energy
  • 6.5.1.4. Kinetic energy
  • 6.5.1.5. Variational equations: operators
  • 6.5.1.6. Boundary conditions
  • 6.5.1.7. Harmonic regime
  • 6.5.1.8. Angular Fourier series
  • 6.5.2. Ring
  • 6.5.2.1. Displacement field
  • 6.5.2.2. Ring operator
  • 6.5.2.3. Harmonic regime: solution in angular harmonics
  • Chapter 7: Vibrations of Thin Structures
  • 7.1. Beam vibrations
  • 7.1.1. Beam compression vibrations
  • 7.1.1.1. Clamped beam and several solution methods
  • 7.1.1.2. Expansion based on eigenmodes
  • 7.1.1.3. Solution using Green's representation
  • 7.1.1.4. General integration method
  • 7.1.1.5. Beam excited at one end
  • 7.1.2. Beam bending vibrations
  • 7.1.2.1. General solution
  • 7.1.2.2. Green's kernels
  • 7.1.2.3. Beams of finite length.
  • 7.1.2.4. Supported beam
  • 7.1.2.5. Clamped beam
  • 7.1.2.6. Other boundary conditions
  • 7.1.2.7. Two cantilever beams coupled with a spring
  • 7.1.2.8. Identification of mechanical properties
  • 7.2. Plate vibrations
  • 7.2.1. Infinite plate
  • 7.2.1.1. General solution
  • 7.2.1.2. Polar coordinates
  • 7.2.1.3. Cartesian coordinates
  • 7.2.1.4. Dispersion relation
  • 7.2.1.5. Green's kernel
  • 7.2.1.6. Thick plate
  • 7.2.2. Finite plate
  • 7.2.2.1. Rectangular plate with simply supported edges
  • 7.2.2.2. Modal basis
  • 7.2.2.3. Green's kernel
  • 7.2.2.4. Clamped or free rectangular plate
  • 7.2.2.5. Clamped plate
  • 7.2.2.6. Free plate
  • 7.2.2.7. Identification of experimental resonance frequencies
  • 7.2.2.8. Clamped circular plate
  • 7.2.2.9. Forced regime
  • 7.2.2.10. Free circular plate
  • 7.2.2.11. Supported circular plate
  • 7.2.3. Plate of arbitrary shape
  • 7.2.3.1. Green's formula
  • 7.2.3.2. Green's representation of the displacement of the plate
  • 7.2.3.3. Boundary integral equations
  • 7.3. Cylindrical shell vibrations
  • 7.3.1. Infinite shell
  • 7.3.1.1. General solution
  • 7.3.1.2. Green's kernel
  • 7.3.2. Finite shell
  • 7.3.2.1. Special case of the supported shell
  • 7.3.2.2. Other boundary conditions
  • 7.3.2.3. Green's formula
  • 7.3.2.4. Response of a shell excited by a turbulent boundary layer
  • Chapter 8: Acoustic Radiation of Thin Plates
  • 8.1. First notions of vibroacoustics: a simple example
  • 8.1.1. Motion equations
  • 8.1.2. Acoustic radiation
  • 8.1.3. "Light fluid" approximation
  • 8.1.4. Sound transmission
  • 8.1.5. Transient regime
  • 8.2. Free waves in an infinite plate immersed in a fluid
  • 8.2.1. Roots of the dispersion equation
  • 8.2.2. Light fluid approximation
  • 8.2.2.1. Subsonic regime
  • 8.2.2.2. Supersonic regime
  • 8.3. Transmission of a plane wave by a thin plate.