Acoustics, aeroacoustics and vibrations /
This didactic book presents the main elements of acoustics, aeroacoustics and vibrations. Illustrated with numerous concrete examples linked to solid and fluid continua, Acoustics, Aeroacoustics and Vibrations proposes a selection of applications encountered in the three fields, whether in room acou...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley and Sons, Inc.,
2016.
|
Colección: | Waves series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Chapter 1: A Bit of History
- 1.1. The production of sound
- 1.2. The propagation of sound
- 1.3. The reception of sound
- 1.4. Aeroacoustics
- Chapter 2: Elements of Continuum Mechanics
- 2.1. Mechanics of deformable media
- 2.1.1. Continuum
- 2.1.2. Kinematics of deformable media
- 2.1.2.1. Lagrange's kinematics
- 2.1.2.2. Euler's kinematics
- 2.1.2.3. Kinematics of a surface
- 2.1.2.4. Material derivatives
- 2.1.3. Deformation tensor (or Green's tensor)
- 2.2. Conservation laws
- 2.2.1. Conservation of mass
- 2.2.2. Conservation of momentum
- 2.2.3. Conservation of energy
- 2.3. Constitutive laws
- 2.3.1. Elasticity
- 2.3.1.1. Stress-deformation tensor
- 2.3.1.2. Infinitesimal strain tensor
- 2.3.2. Thermoelasticity and effects of temperature variations
- 2.3.3. Viscoelasticity
- 2.3.3.1. Partial differential operator
- 2.3.3.1.1. Elementary models
- 2.3.3.2. Convolution operator
- 2.3.4. Fluid medium
- 2.4. Hamilton principle
- 2.5. Characteristics of materials
- Chapter 3: Small Mathematics Travel Kit
- 3.1. Measure theory and Lebesgue integration
- 3.1.1. Boolean algebra
- 3.1.2. Measure on a v-algebra
- 3.1.3. Convergence and integration of measurable functions
- 3.1.4. Functional space
- functional
- 3.1.5. Measure as linear functional
- 3.2. Distributions
- 3.2.1. The space D of test functions
- 3.2.2. Distributions definition
- 3.2.3. Operations on distributions
- 3.2.4. N-dimensional generalization
- 3.2.5. Distributions tensor product
- 3.3. Convolution
- 3.3.1. Definition and first properties
- 3.3.2. Convolution algebra and Green's function
- 3.4. Modal methods
- 3.4.1. Eigenmodes of a conservative system
- 3.4.2. Eigenmodes of a non-conservative system
- 3.4.2.1. Eigenmodes-resonance modes.
- 3.4.2.2. Series expansion of resonance modes
- 3.4.2.3. Damped beam
- 3.4.2.4. Eigenmodes and resonance modes
- 3.4.2.4.1. Norm and scalar product
- Chapter 4: Fluid Acoustics
- 4.1. Acoustics equations
- 4.1.1. Conservation equations
- 4.1.2. Establishment of general equations
- 4.1.3. Establishment of the wave equation
- 4.1.4. Velocity potential
- 4.2. Propagation and general solutions
- 4.2.1. One-dimensional motion
- 4.2.2. Three-dimensional motion
- 4.3. Permanent regime: Helmholtz equation
- 4.3.1. General solutions
- 4.3.1.1. One-dimensional motion
- 4.3.1.2. Two-dimensional motion
- 4.3.1.3. Three-dimensional motion
- 4.3.1.4. Acoustic intensity
- 4.3.2. Green's kernels
- 4.3.3. Wave group, phase velocity and group velocity
- 4.4. Discontinuity equations
- 4.4.1. Interface between two propagating media
- 4.4.2. Interface between a propagating and a non-propagating medium
- 4.5. Impedance: measurement and model
- 4.5.1. Kundt's tube
- 4.5.2. Delany-Bazley model
- 4.6. Homogeneous anisotropic medium
- 4.7. Medium with a slowly varying celerity
- 4.8. Media in motion
- 4.8.1. Homogeneous medium in uniform motion
- 4.8.1.1. Continuity condition for normal displacements
- 4.8.1.2. Green's kernel
- 4.8.2. Plane interface between media in motion
- 4.8.3. Cylindrical interface between media in motion
- 4.8.4. Acoustic radiation of a moving surface
- 4.8.4.1. Geometry and notations
- 4.8.4.2. Equation for wave propagation on the outside of the moving surface
- 4.8.4.3. Green's representation for a sheared jet
- 4.8.4.4. Acoustic field radiated by the cylinder
- 4.8.4.5. Pipe directivity
- 4.8.4.6. Results
- Chapter 5: Radiation, Diffraction, Enclosed Space
- 5.1. Acoustic radiation
- 5.1.1. A simple example
- 5.2. Acoustic radiation of point sources
- 5.2.1. Multipolar sources in a harmonic regime.
- 5.2.2. Far-field
- 5.3. Radiation of distributed sources
- 5.3.1. Layer potentials
- 5.3.1.1. Simple layer potential
- 5.3.1.2. Double layer potential
- 5.3.2. Green's representation of pressure and introduction to the theory of diffraction
- 5.3.2.1. Green's formula
- 5.3.2.2. Green's representation
- 5.3.2.3. Solving integral equations
- 5.4. Acoustic radiation of a piston in a plane
- 5.4.1. Far-field radiation of a circular piston: directivity
- 5.4.2. Radiation along the axis of a circular piston
- 5.5. Acoustic radiation of a rectangular baffled structure
- 5.6. Acoustic radiation of moving sources
- 5.6.1. Compact and non-compact sources
- 5.6.1.1. Spatially compact source
- 5.6.1.2. Spatially non-compact source (M » 1)
- 5.6.1.3. The case of the flow source
- 5.6.2. Sources in uniform and non-uniform motion
- 5.6.2.1. Doppler effect
- 5.6.2.2. Shock waves
- 5.7. Sound propagation in a bounded medium
- 5.7.1. Eigenfrequencies and resonance frequencies
- 5.7.2. The Helmholtz resonator
- 5.7.3. Example in dimension 1
- 5.7.4. Example in dimension 3
- 5.7.5. Propagation of pure sound in a circular enclosure
- 5.7.5.1. Direct integration methods
- 5.7.5.1.1. Separation of variables
- 5.7.5.1.2. Direct integration
- 5.7.5.2. Method of integration by integral equations
- 5.7.5.2.1. Green's representation
- 5.8. Basics of room acoustics
- 5.8.1. The concept of acoustic power
- 5.8.2. Directivity index
- 5.8.3. Reverberation duration
- 5.8.4. Reverberant fields
- 5.8.5. Pressure level in rooms
- 5.8.6. Crossover frequency and the reverberation distance
- 5.9. Sound propagation in a wave guide
- 5.9.1. General solution in a wave guide
- 5.9.2. Physical interpretation and theory of modes
- 5.9.2.1. Modal basis
- 5.9.2.2. Guide with a circular section
- 5.9.2.3. Elements of the modal theory of wave guides.
- 5.9.3. Green's function
- 5.9.4. Section change
- 5.9.4.1. Discontinuous variation
- 5.9.4.2. Continuous variation: pavilions
- 5.9.5. Propagation in a conduit in the presence of flow
- Chapter 6: Wave Propagation in Elastic Media
- 6.1. Equation of mechanical wave propagation
- 6.2. Free waves
- 6.2.1. Volumic waves
- 6.2.2. Plane wave case
- 6.2.3. Surface waves
- 6.2.3.1. Rayleigh waves
- 6.2.3.2. Scholte-Stoneley waves
- 6.2.3.3. Love waves
- 6.3. Green's kernels in a harmonic regime
- 6.4. Thin body approximation for plannar structures
- 6.4.1. Straight beams
- 6.4.1.1. Displacement field
- 6.4.1.2. Beam operator
- 6.4.1.2.1. Longitudinal vibrations (compression)
- 6.4.1.2.2. Weak formulation of the problem
- 6.4.1.2.3. Transverse vibrations (bending)
- 6.4.1.2.4. Weak formulation of the problem
- 6.4.2. Plane plates
- 6.4.2.1. Displacement field
- 6.4.2.2. Plate operator
- 6.4.2.3. Harmonic regime
- 6.5. Thin body approximation for cylindrical structures
- 6.5.1. Cylinder
- 6.5.1.1. Displacement field
- 6.5.1.2. Thin shell operators
- 6.5.1.3. Elastic potential energy
- 6.5.1.4. Kinetic energy
- 6.5.1.5. Variational equations: operators
- 6.5.1.6. Boundary conditions
- 6.5.1.7. Harmonic regime
- 6.5.1.8. Angular Fourier series
- 6.5.2. Ring
- 6.5.2.1. Displacement field
- 6.5.2.2. Ring operator
- 6.5.2.3. Harmonic regime: solution in angular harmonics
- Chapter 7: Vibrations of Thin Structures
- 7.1. Beam vibrations
- 7.1.1. Beam compression vibrations
- 7.1.1.1. Clamped beam and several solution methods
- 7.1.1.2. Expansion based on eigenmodes
- 7.1.1.3. Solution using Green's representation
- 7.1.1.4. General integration method
- 7.1.1.5. Beam excited at one end
- 7.1.2. Beam bending vibrations
- 7.1.2.1. General solution
- 7.1.2.2. Green's kernels
- 7.1.2.3. Beams of finite length.
- 7.1.2.4. Supported beam
- 7.1.2.5. Clamped beam
- 7.1.2.6. Other boundary conditions
- 7.1.2.7. Two cantilever beams coupled with a spring
- 7.1.2.8. Identification of mechanical properties
- 7.2. Plate vibrations
- 7.2.1. Infinite plate
- 7.2.1.1. General solution
- 7.2.1.2. Polar coordinates
- 7.2.1.3. Cartesian coordinates
- 7.2.1.4. Dispersion relation
- 7.2.1.5. Green's kernel
- 7.2.1.6. Thick plate
- 7.2.2. Finite plate
- 7.2.2.1. Rectangular plate with simply supported edges
- 7.2.2.2. Modal basis
- 7.2.2.3. Green's kernel
- 7.2.2.4. Clamped or free rectangular plate
- 7.2.2.5. Clamped plate
- 7.2.2.6. Free plate
- 7.2.2.7. Identification of experimental resonance frequencies
- 7.2.2.8. Clamped circular plate
- 7.2.2.9. Forced regime
- 7.2.2.10. Free circular plate
- 7.2.2.11. Supported circular plate
- 7.2.3. Plate of arbitrary shape
- 7.2.3.1. Green's formula
- 7.2.3.2. Green's representation of the displacement of the plate
- 7.2.3.3. Boundary integral equations
- 7.3. Cylindrical shell vibrations
- 7.3.1. Infinite shell
- 7.3.1.1. General solution
- 7.3.1.2. Green's kernel
- 7.3.2. Finite shell
- 7.3.2.1. Special case of the supported shell
- 7.3.2.2. Other boundary conditions
- 7.3.2.3. Green's formula
- 7.3.2.4. Response of a shell excited by a turbulent boundary layer
- Chapter 8: Acoustic Radiation of Thin Plates
- 8.1. First notions of vibroacoustics: a simple example
- 8.1.1. Motion equations
- 8.1.2. Acoustic radiation
- 8.1.3. "Light fluid" approximation
- 8.1.4. Sound transmission
- 8.1.5. Transient regime
- 8.2. Free waves in an infinite plate immersed in a fluid
- 8.2.1. Roots of the dispersion equation
- 8.2.2. Light fluid approximation
- 8.2.2.1. Subsonic regime
- 8.2.2.2. Supersonic regime
- 8.3. Transmission of a plane wave by a thin plate.