Cargando…

In situ spectroscopic techniques at high pressure /

In situ Spectroscopic Techniques at High Pressure provides a comprehensive treatment of in-situ applications of spectroscopic techniques at high pressure and their working principles, allowing the reader to develop a deep understanding of which measurements are accessible with each technique, what t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Braeuer, Andreas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2015.
Colección:Supercritical fluid science and technology.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Copyright; Contents; Foreword; Preface; List of Abbreviations and Parameters; Abbreviations and Acronyms; Parameters in Latin letters; Parameters in Greek letters; Constants; Indices; Chapter 1
  • High Pressure: Fellow and Opponent of Spectroscopic Techniques; 1.1
  • Compressible fluids in high-pressure process technology; 1.2
  • Spectroscopic techniques bring light into the darkness of high-pressure processes; 1.3
  • Why high pressure is an opponent of spectroscopic techniques?; 1.4
  • Why high pressure is a fellow of spectroscopic techniques?
  • 1.5
  • Advantages of spectroscopic techniques1.5.1
  • Non-invasive Measurement Principle of In Situ Spectroscopic Techniques; 1.5.2
  • Temporal Resolution and Sampling Rates of In Situ Spectroscopic Techniques; 1.5.3
  • Spatial Resolution of In Situ Spectroscopic Techniques; 1.5.4
  • Dimensionality of In Situ Spectroscopic Techniques; 1.5.4.1
  • Zero-Dimensional Spectroscopy (Point Measurements); 1.5.4.2
  • One-Dimensional Spectroscopy; 1.5.4.3
  • Two-Dimensional Spectroscopy; 1.6
  • Exercises corresponding to Chapter 1; Exercise 1.1: Temporal Resolution and Sampling Rate; Tasks: Exercise 1.1.
  • Answers: Exercise 1.1Exercise 1.2: Spatial Resolution; Tasks: Exercise 1.2; Answers: Exercise 1.2; Exercise 1.3: Spatial Resolution; Tasks: Exercise 1.3; Answers: Exercise 1.3; 1.7
  • Appendix-Chapter 1; 1.7.1
  • Supercritical Fluids; 1.7.1.1
  • What is a Supercritical Fluid?; 1.7.1.2
  • What Makes a Supercritical Fluid Attractive for Process Engineers?; 1.7.1.2.1
  • Supercritical Fluids are Compressible; 1.7.1.2.2
  • Supercritical Fluids Feature a Low Viscosity; 1.7.1.2.3
  • Conductivity and Capacity of Heat of Supercritical Fluids; 1.7.1.3
  • What is a Supercritical Mixture?
  • 1.7.1.3.1
  • Pressure-Composition (Px) Diagram of Binary Mixtures1.7.1.3.2
  • What is the Mixture Critical Point?; 1.7.2
  • Supercritical Anti-solvent (SAS) Process; References; Chapter 2
  • Interaction of Matter and Electromagnetic Radiation; 2.1
  • Properties of electromagnetic radiation and photons; 2.1.1
  • Equation of a Harmonic Wave; 2.1.2
  • Polarisation of the Electric Field; 2.1.3
  • Spectrum of Electromagnetic Radiation; 2.1.4
  • Energy and Momentum of a Photon; 2.1.5
  • Exercises Corresponding to Section 2.1; Exercise 2.1: Wave Function I; Task: Exercise 2.1; Answer: Exercise 2.1.
  • Exercise 2.2: Wave Function IITask: Exercise 2.2; Answer: Exercise 2.2; Exercise 2.3: Wave Function III; Task: Exercise 2.3; Answer: Exercise 2.3; Exercise 2.4: Photons and Continuous-Wave Laser; Task: Exercise 2.4; Answer: Exercise 2.4; Exercise 2.5: Peak Power and Average Power of Pulsed Laser; Task: Exercise 2.5; Answer: Exercise 2.5; 2.2
  • Properties of molecules; 2.2.1
  • Specific Heat Capacity of a Gas; 2.2.2
  • Translational Energy; 2.2.3
  • Rotational Energy of a Diatomic Molecule; 2.2.4
  • Vibrational Energy of a Diatomic Molecule; 2.2.5
  • Electronic Energy.
  • 2.2.6
  • Energy of Molecules Relevant for Spectroscopy.