|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_ocn930703354 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
151201s2016 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDXCP
|d N$T
|d EBLCP
|d OPELS
|d OCLCF
|d B24X7
|d COO
|d D6H
|d DEBSZ
|d NLE
|d K6U
|d U3W
|d STF
|d UAB
|d CEF
|d ERL
|d LVT
|d KNOVL
|d ZCU
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 931592636
|a 932333192
|
020 |
|
|
|a 9780081007396
|q (electronic bk.)
|
020 |
|
|
|a 0081007396
|q (electronic bk.)
|
020 |
|
|
|a 9780081007143
|q (electronic bk.)
|
020 |
|
|
|a 0081007140
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000057011381
|
029 |
1 |
|
|a AU@
|b 000062548111
|
029 |
1 |
|
|a AU@
|b 000068485878
|
029 |
1 |
|
|a CHBIS
|b 010796132
|
029 |
1 |
|
|a CHNEW
|b 001013280
|
029 |
1 |
|
|a CHVBK
|b 403939968
|
029 |
1 |
|
|a DEBSZ
|b 48237716X
|
029 |
1 |
|
|a GBVCP
|b 845249215
|
029 |
1 |
|
|a NLGGC
|b 401037797
|
035 |
|
|
|a (OCoLC)930703354
|z (OCoLC)931592636
|z (OCoLC)932333192
|
050 |
|
4 |
|a TJ930
|b .C67 2016
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.8672
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Corrosion-under-insulation (CUI) guidelines /
|c edited by S. Winnik.
|
250 |
|
|
|a Revised edition.
|
264 |
|
1 |
|a Cambridge :
|b Woodhead Publishing,
|c [2016]
|
264 |
|
4 |
|c ©2016
|
300 |
|
|
|a 1 online resource :
|b color illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Woodhead Publishing in materials
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed December 9, 2015)
|
500 |
|
|
|a "Woodhead Publishing is an imprint of Elsevier."
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Front Cover; Corrosion-Under-Insulation (CUI) Guidelines: Revised Edition; Copyright; Contents; Volumes in the EFC series; Introduction; Chapter 1: Introduction; 1.1 Purpose of document; References; Chapter 2:Economic consideration; 2.1 Statistical analysis; 2.2 Size of the issue; 2.2.1 Safety and integrity; 2.2.2 Environment; 2.2.3 Revenue or production loss; 2.2.4 Reputation; 2.2.5 Collateral damage cost; 2.2.6 On-line leak sealing cost; 2.2.7 Repair/replacement, fabrication, and installation costs; 2.2.8 Fitness for continued service; 2.2.9 On-stream inspection and NDE/NDT
|
505 |
8 |
|
|a 2.3 Key performance indicatorsChapter 3:Ownership and responsibility; 3.1 Senior management; 3.2 Engineering manager; 3.3 Maintenance; 3.4 Operations; 3.5 Inspection; 3.6 Members of a project team: CUI program; Chapter 4:The risk-based inspection methodology for CUI; 4.1 Introduction; 4.2 High-level prioritization; 4.2.1 Health & safety consequences (A); 4.2.2 Environmental consequences (B); 4.2.3 Economic consequences (C); 4.2.4 Impact on reputation (D); 4.3 Data validation; 4.3.1 The need for data validation; 4.3.2 Different aspects of a data validation
|
505 |
8 |
|
|a 4.3.3 Implementation of data validation4.3.4 CUI and mothballing of equipment; 4.4 Challenging the need for insulation; 4.5 Using RBI to design CUI inspection plans; 4.5.1 Preparation of an RBI analysis; 4.5.2 Susceptibility factors; 4.5.2.1 Operating temperature; 4.5.2.2 Coating status; 4.5.2.3 Cladding/insulation condition; 4.5.2.4 Available corrosion allowance; 4.5.2.5 External coil/steam tracing; 4.5.2.6 External environment; 4.5.3 Qualitative RBI analysis; 4.5.4 Semiquantitative RBI analysis; 4.5.4.1 Consequence of CUI failure; 4.5.4.2 Probability of CUI failure
|
505 |
8 |
|
|a 4.5.4.3 Risk of CUI failureReferences; Chapter 5:Inspection activities/strategy; 5.1 General considerations; 5.2 Typical locations on piping circuits susceptible to CUI; 5.3 Typical locations on equipment susceptible to CUI; 5.3.1 Vessels, columns, and tanks; 5.3.2 Heat exchangers; 5.4 Examples of risk-based inspection plans; 5.4.1 Evaluated risk level: High/extreme; 5.4.2 Evaluated risk level: Medium-high; 5.4.3 Evaluated risk level: Medium; 5.4.4 Evaluated risk level: Low; 5.4.5 Evaluated risk level: Negligible; Chapter 6:Nondestructive examination and testing techniques for CUI
|
505 |
8 |
|
|a 6.1 NDE/NDT techniquesReferences; Chapter 7:Recommended best practice to mitigate CUI; 7.1 Background; 7.1.1 Key parameters; 7.1.2 Assumptions; 7.2 Current CUI prevention methods; 7.3 How to achieve a life expectancy of over 25 years; 7.3.1 CUI preventive measures: Recent approaches; 7.3.2 Material upgrade possibilities; 7.4 Benefits of TSA; 7.5 Use of personnel protective guards; 7.6 Use of aluminum foil to mitigate Cl-ESCC of austenitic stainless steel; References; Chapter 8:Design for the prevention of CUI; 8.1 Introduction; 8.2 Challenge the requirement for insulation
|
520 |
|
|
|a Corrosion-under-insulation (CUI) refers to the external corrosion of piping and vessels that occurs underneath externally clad/jacketed insulation as a result of the penetration of water. By its very nature CUI tends to remain undetected until the insulation and cladding/jacketing is removed to allow inspection or when leaks occur. CUI is a common problem shared by the refining, petrochemical, power, industrial, onshore and offshore industries. In the first edition of this book published in 2008, the EFC Working Parties WP13 and WP15 engaged together to provide guidelines on managing CUI with contributions from a number of European refining, petrochemical and offshore companies. The guidelines are intended for use on all plants and installation that contain insulated vessels, piping and equipment. The guidelines cover a risk-based inspection methodology for CUI, inspection techniques and recommended best practice for mitigating CUI, including design of plant and equipment, coatings and the use of thermal spray techniques, types of insulation, cladding/jacketing materials and protection guards. The guidelines also include case studies. The original document first published in 2008 was very successful and provided an important resource in the continuing battle to mitigate CUI. Many members of the EFC corrosion community requested an update and this has taken between 18-24 months to do so. Hopefully this revised document will continue to serve the community providing a practical source of information on how to monitor and manage insulated systems.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Metals & Metallurgy
|
650 |
|
0 |
|a Piping
|x Corrosion.
|
650 |
|
0 |
|a Insulation (Heat)
|
650 |
|
6 |
|a Tuyauterie
|x Corrosion.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Insulation (Heat)
|2 fast
|
650 |
|
7 |
|a Piping
|x Corrosion
|2 fast
|
700 |
1 |
|
|a Winnik, S.
|q (Stefan),
|e editor.
|
776 |
0 |
8 |
|i Print version:
|a Winnik, S.
|t Corrosion Under Insulation (CUI) Guidelines : Revised.
|d : Elsevier Science, ©2015
|
830 |
|
0 |
|a Woodhead Publishing in materials.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpCICUIGE1/toc
|z Texto completo
|
938 |
|
|
|a Books 24x7
|b B247
|n bke00106771
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4178784
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1104367
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12720927
|
994 |
|
|
|a 92
|b IZTAP
|