Cargando…

High-temperature solid oxide fuel cells for the 21st century : fundamentals, design and applications /

This edition explores the growing interest in fuel cells as a sustainable source of energy. It brings the topic of green energy front and center, illustrating the need for new books that provide comprehensive and practical information on specific types of fuel cells and their applications. This land...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kendall, Kevin, 1943- (Editor ), Kendall, Michaela (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press is an imprint of Elsevier, [2016]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction to SOFCs / K. Kendall
  • 1.1. Introduction
  • 1.2. SOFC principles
  • 1.3. Problems to be resolved
  • 1.4. Historical summary
  • 1.5. Zirconia sensors for oxygen measurement
  • 1.6. Zirconia availability and production
  • 1.7. High-quality electrolyte fabrication processes
  • 1.8. Anode-supported SOFC materials and reactions
  • 1.9. Interconnection for electrically connecting the cells
  • 1.10. Cell and stack designs
  • 1.11. SOFC reactor systems
  • 1.12. Fuel considerations
  • 1.13.Competition and combination with heat engines in applications
  • 1.14. SOFC publications
  • References
  • 2. History / K. Kendall
  • 2.1. Introduction
  • 2.2. Before the first solid electrolyte gas cells
  • 2.3. From solid electrolyte gas cells to solid oxide fuel cells
  • 2.4. First detailed investigations of solid oxide fuel cells
  • 2.5. Progress in the 1960s
  • 2.6. On the path to practical solid oxide fuel cells
  • 2.7. Ceramic processing for high-quality products
  • 2.8. Anode support
  • 2.9. Better cathodes
  • 2.10. Low-temperature operation with new interconnects
  • 2.11. Application areas
  • 2.12. Summary
  • References
  • 3. Thermodynamics / W. Winkler
  • 3.1. Introduction
  • 3.2. The ideal reversible SOFC
  • 3.3. Ohmic losses and voltage dependence on fuel utilisation
  • 3.4. Thermodynamic definition of a fuel cell producing electricity and heat
  • 3.5. Thermodynamic theory of hybrid SOFC systems
  • 3.6. Design principles of SOFC hybrid systems
  • 3.7. Summary
  • References
  • 4. Electrolytes / T. Ishihara
  • 4.1. Introduction
  • 4.2. Fluorite-structured electrolytes
  • 4.3. Perovskite and perovskite-related electrolytes
  • 4.4. Alternative-structured electrolyte materials
  • 4.5. Summary
  • References
  • 5. Anodes / C.D. Savaniu
  • 5.1. Introduction
  • 5.2. Cell performance requirements
  • 5.3. Cell lifetime requirements
  • 5.4. Catalytic and reforming properties
  • 5.5. Anode design and engineering
  • 5.6. Conventional nickel-based anodes
  • 5.7. Alternative cermet materials
  • 5.8. General conclusions
  • References
  • 6. Cathodes / T. Horita
  • 6.1. Introduction
  • 6.2. Physical and physicochemical properties of perovskite cathode materials
  • 6.3. Chemical stability and compatibility with the cell components
  • 6.4. Thermo-chemo-mechanical properties
  • 6.5. Summary and further researches
  • References
  • 7. Interconnects / W.J. Quadakkers
  • 7.1. Introduction
  • 7.2. SOFC environments
  • 7.3. Ceramic interconnects
  • 7.4. High-temperature alloys for SOFC applications
  • 7.5. Growth rates of chromia base surface scales
  • 7.6. Degradation in carbon containing anode gases
  • 7.7. Dual atmosphere exposures
  • 7.8. Specimens thickness dependence of oxidation behaviour
  • 7.9. Electronic conductivity of chromia-based scales
  • 7.10. Volatile species and protection against chromium evaporation
  • 7.11. Interaction between interconnect and anode side contact materials
  • 7.12. Interaction of metallic interconnects with sealing materials
  • 7.13. Protective coatings and contact materials
  • 7.14. Summary
  • References
  • 8. Cell and stack design, fabrication and performance / N.Q. Minh
  • 8.1. Introduction
  • 8.2. Requirements
  • 8.3. SOFC single cell
  • 8.4. SOFC multi-cell stacks
  • 8.5. Summarising remarks
  • References
  • 9. System designs and applications / N.Q. Minh
  • 9.1. Introduction
  • 9.2. Overview of SOFC power systems
  • 9.3. Type of SOFC power system
  • 9.4. SOFC power system design
  • 9.5. Applications of SOFC power systems
  • 9.6. Solid oxide electrolysis cell (SOEC) systems for hydrogen/chemical production
  • 9.7. Summarising remarks
  • References
  • 10. Portable early market SOFCs / K. Kendall
  • 10.1. Introduction
  • 10.2. Sensor SOFCs
  • 10.3. MEMS-based SOFCs
  • 10.4. Micro-tubular SOFCs
  • 10.5. Benefit of improved ceramic processing for quality ceramics
  • 10.6. Benefits of improved power density
  • 10.7. Rapid warm-up
  • 10.8. International efforts on micro SOFCs
  • 10.9. Demonstration projects
  • 10.10. Summary
  • References
  • 11. Sources of cell and electrode polarisation losses in SOFCs / S.B. Adler
  • 11.1. Introduction
  • 11.2. Cell losses
  • 11.3. Ohmic and gas-phase losses within porous electrodes
  • 11.4. Cell losses within a multi-cell stack
  • 11.5. Subdivision of local overpotential into specific rate processes
  • 11.6. Conclusions and outlook
  • References
  • 12. Testing of electrodes, cells and short stacks / W. Wang
  • 12.1. Introduction
  • 12.2. Testing electrodes
  • 12.3. Testing single cells and stacks
  • 12.4. Area-specific resistance
  • 12.5. Testing cells on alternative fuels
  • 12.6. Summary
  • References
  • 13. Cell, stack and system modelling / K. Kendall
  • 13.1. Introduction
  • 13.2. Basic definitions
  • 13.3. Multi-scale modelling
  • 13.4. System level modelling
  • 13.5. Oscillations in SOFCs running on methane
  • 13.6. Summary and future prospect
  • Acknowledgements
  • References
  • 14. Fuels and fuel processing in SOFC applications / G.H. Xiu
  • 14.1. Introduction
  • 14.2. Range of fuels
  • 14.3. Fuel reforming principle
  • 14.4. Carbon deposition and removal
  • 14.5. Impurity tolerance and purification
  • 14.6. Application of typical reforming processes for SOFCs
  • 14.7. Brief consideration of present technology and future prospect
  • References.