Cargando…

Nonlinear dynamics : mathematical models for rigid bodies with a liquid /

The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional sy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lukovskiĭ, I. A. (Ivan Aleksandrovich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : Walter de Gruyter GmbH & Co. KG, [2015]
Colección:De Gruyter studies in mathematical physics ; 27.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_ocn922952506
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 150518t20152015gw ob 001 0 eng d
040 |a VT2  |b eng  |e pn  |c VT2  |d OCLCO  |d OCLCF  |d N$T  |d OCLCQ  |d KNOVL  |d OCLCQ  |d AGLDB  |d STF  |d OCLCQ  |d ICA  |d S4S  |d MERUC  |d VT2  |d OCLCQ  |d D6H  |d VTS  |d OCLCA  |d WYU  |d AJS  |d OCLCQ  |d OCLCO  |d UPM  |d OCLCO  |d AAA  |d OCLCQ 
020 |a 9783110389739  |q (electronic bk.) 
020 |a 3110389738  |q (electronic bk.) 
020 |a 9781523104642  |q (electronic bk.) 
020 |a 1523104643  |q (electronic bk.) 
020 |z 9783110316551 
020 |z 3110316552 
020 |z 9783110316582  |q (set) 
029 1 |a DEBSZ  |b 484753584 
035 |a (OCoLC)922952506 
050 4 |a QA427  |b .L85 2015eb 
072 7 |a TEC  |x 014000  |2 bisacsh 
082 0 4 |a 532/.05  |2 23 
049 |a UAMI 
100 1 |a Lukovskiĭ, I. A.  |q (Ivan Aleksandrovich) 
245 1 0 |a Nonlinear dynamics :  |b mathematical models for rigid bodies with a liquid /  |c Ivan A. Lukovsky. 
260 |a Berlin ;  |a Boston :  |b Walter de Gruyter GmbH & Co. KG,  |c [2015] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter studies in mathematical physics ;  |v 27 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 377-390) and index. 
505 0 |a Governing equations and boundary conditions in the dynamics of a bounded volume of liquid -- Direct methods in the nonlinear problems of the dynamics of bodies containing liquids -- Hydrodynamic theory of motions of the ships transporting liquids -- Nonlinear differential equations of space motions of a rigid body containing an upright cylindrical cavity partially filled with liquid -- Nonlinear modal equations for noncylindical axisymmetric tanks -- Derivation of the nonlinear equations of space motions of the body-liquid system by the method of perturbation theory -- Equivalent mechanical systems in the dynamics of a rigid body with liquid -- Forced finite-amplitude liquid sloshing in moving vessels. 
520 |a The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi- )analytical approaches to the "fluid-structure" interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.--Provided by publisher 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a Knovel  |b ACADEMIC - General Engineering & Project Administration 
650 0 |a Nonlinear theories  |x Mathematics. 
650 0 |a Dynamics  |x Mathematics. 
650 6 |a Théories non linéaires  |x Mathématiques. 
650 6 |a Dynamique  |x Mathématiques. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Hydraulics.  |2 bisacsh 
650 7 |a Dynamics  |x Mathematics.  |2 fast  |0 (OCoLC)fst00900303 
650 7 |a Nonlinear theories  |x Mathematics.  |2 fast  |0 (OCoLC)fst01038817 
776 0 8 |i Print version:  |a Lukovskiĭ, I.A. (Ivan Aleksandrovich).  |t Nonlinear dynamics  |z 9783110316551  |w (DLC) 2015016148  |w (OCoLC)910239353 
830 0 |a De Gruyter studies in mathematical physics ;  |v 27. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpNDMMRBL4/toc  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 988039 
994 |a 92  |b IZTAP