Cargando…

Marine structural design /

Describes the applications of structural engineering to marine structures. This work covers fatigue and fracture criteria that forms a basis for limit-state design and re-assessment of existing structures and assists with determining material and inspection requirements. It includes application of r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bai, Yong (Autor), Jin, Wei-Liang (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, UK : Butterworth-Heinemann is an imprint of Elsevier, [2016]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Marine Structural Design; Copyright; Contents; Preface to First Edition; Preface to Second Edition; Part 1 Structural Design Principles; 1
  • Introduction; 1.1 Structural Design Principles; 1.1.1 Introduction; 1.1.2 Limit-State Design; 1.2 Strength and Fatigue Analysis; 1.2.1 Ultimate Strength Criteria; 1.2.2 Design for Accidental Loads; 1.2.3 Design for Fatigue; 1.3 Structural Reliability Applications; 1.3.1 Structural Reliability Concepts; 1.3.2 Reliability-Based Calibration of Design Factor; 1.3.3 Requalification of Existing Structures; 1.4 Risk Assessment.
  • 1.4.1 Application of Risk Assessment1.4.2 Risk-Based Inspection; 1.4.3 Human and Organization Factors; 1.5 Layout of This Book; 1.6 How to Use This Book; References; 2
  • Marine Composite Materials and Structure; 2.1 Introduction; 2.2 The Application of Composites in the Marine Industry; 2.2.1 Ocean Environment; 2.2.2 Application in the Shipbuilding Industry; Pleasure Boats Industry; Recreational Applications; Commercial Applications; Military Applications; 2.2.3 Marine Aviation Vehicles and Off-Shore Structure; 2.3 Composite Material Structure; 2.3.1 Fiber Reinforcements; Glass Fibers.
  • Aramid FibersCarbon Fibers; 2.3.2 Resin Systems; 2.4 Material Property; 2.4.1 Orthotropic Properties; 2.4.2 Orthotropic Properties in Plane Stress; 2.5 Key Challenges for the Future of Marine Composite Materials; References; 3
  • Green Ship Concepts; 3.1 General; 3.2 Emissions; 3.2.1 Regulations on Air Pollution; 3.2.2 Regulations on GHGs; 3.2.3 Effect of Design Variables on the EEDI; 3.2.4 Influence of Speed on the EEDI; 3.2.5 Influence of Hull Steel Weight on the EEDI; 3.3 Ballast Water Treatment; 3.4 Underwater Coatings; References; 4
  • LNG Carrier; 4.1 Introduction; 4.2 Development.
  • 4.3 Typical Cargo Cycle4.3.1 Inert; 4.3.2 Gas Up; 4.3.3 Cool Down; 4.3.4 Bulk Loading; 4.3.5 Voyage; 4.3.6 Discharge; 4.3.7 Gas Free; 4.4 Containment Systems; 4.4.1 Self-Supporting Type; Moss Tanks (Spherical IMO-Type B LNG Tanks); IHI (Prismatic IMO-Type B LNG Tanks); 4.4.2 Membrane Type; GT96; TGZ Mark III; CS1; 4.5 Structural Design of the LNG Carrier; 4.5.1 ULS (Ultimate Limit State) Design of the LNG Carrier; Design of the LNG Carrier Hull Girder; Design Principles; Design Wave; Global Load Conditions; Load Condition 1-Maximum Hogging; Load Condition 2-Maximum Sagging.
  • Combination of StressesLongitudinal Stresses; Transverse Stresses; Shear Stresses; Capacity Checks; General Principles; Hull Girder Moment Capacity Checks; Hull Girder Shear Capacity Check; 4.6 Fatigue Design of an LNG Carrier; 4.6.1 Preliminary Design Phase; 4.6.2 Fatigue Design Phase; References; 5
  • Wave Loads for Ship Design and Classification; 5.1 Introduction; 5.2 Ocean Waves and Wave Statistics; 5.2.1 Basic Elements of Probability and Random Processes; 5.2.2 Statistical Representation of the Sea Surface; 5.2.3 Ocean Wave Spectra; 5.2.4 Moments of Spectral Density Function.