Integrating omics data /
Tutorial chapters by leaders in the field introduce state-of-the-art methods to handle information integration problems of omics data.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Cambridge University Press,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half title
- Title
- Copyright
- Contents
- Contributors
- Introduction
- Part A: Horizontal Meta-Analysis
- 1. Meta-Analysis of Genome-Wide Association Studies: A Practical Guide
- 2. MetaOmics: Transcriptomic Meta-Analysis Methods for Biomarker Detection, Pathway Analysis and Other Exploratory Purposes
- 3. Integrative Analysis of Many Biological Networks to Study Gene Regulation
- 4. Network Integration of Genetically Regulated Gene Expression to Study Complex Diseases
- 5. Integrative Analysis of Multiple ChIP-X Data Sets Using Correlation Motifs
- Part B: Vertical Integrative Analysis (General Methods)
- 6. Identify Multi-Dimensional Modules from Diverse Cancer Genomics Data
- 7. A Latent Variable Approach for Integrative Clustering of Multiple Genomic Data Types
- 8. Penalized Integrative Analysis of High-Dimensional Omics Data
- 9. A Bayesian Graphical Model for Integrative Analysis of TCGA Data: BayesGraph for TCGA Integration
- 10. Bayesian Models for Flexible Integrative Analysis of Multi-Platform Genomics Data
- 11. Exploratory Methods to Integrate Multisource Data
- Part C: Vertical Integrative Analysis (Methods Specialized to Particular Data Types)
- 12. eQTL and Directed Graphical Model
- 13. MicroRNAs: Target Prediction and Involvement in Gene Regulatory Networks
- 14. Integration of Cancer Omics Data into a Whole-Cell Pathway Model for Patient-Specific Interpretation
- 15. Analyzing Combinations of Somatic Mutations in Cancer Genomes
- 16. A Mass-Action-Based Model for Gene Expression Regulation in Dynamic Systems
- 17. From Transcription Factor Binding and Histone Modification to Gene Expression: Integrative Quantitative Models
- 18. Data Integration on Noncoding RNA Studies
- 19. Drug-Pathway Association Analysis: Integration of High-Dimensional Transcriptional and Drug Sensitivity Profile.