Cargando…

Nonlinear large-deflection boundary-value problems of rectangular plates /

Relaxation and successive approximation methods are used to solve Von Karman's equations as applied to initially flat, rectangular plates with large deflections under either normal pressure or combined normal pressure and side thrust, and several specific cases are analyzed. The general method...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wang, Chi-Teh (Autor)
Formato: Documento de Gobierno Electrónico eBook
Idioma:Inglés
Publicado: Washington, D.C. : National Advisory Committee for Aeronautics, 1948.
Colección:Technical note (United States. National Advisory Committee for Aeronautics) ; no. 1425.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_ocn919093613
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 150824s1948 dcuad obt f000 0 eng d
040 |a KNOVL  |b eng  |e rda  |e pn  |c KNOVL  |d ZCU  |d UAB  |d DKU  |d OCLCQ  |d CEF  |d RRP  |d YOU  |d S2H  |d OCLCO  |d COP  |d OCLCO  |d OCLCQ  |d UPM  |d OCLCQ  |d OCLCO 
020 |a 9781680156096  |q (electronic bk.) 
020 |a 1680156098  |q (electronic bk.) 
029 1 |a GBVCP  |b 856592137 
035 |a (OCoLC)919093613 
050 4 |a TA660.P6 
082 0 4 |a 624.17765  |2 23 
086 0 |a Y 3.N 21/5:6/1425 
088 |a NACA-TN-1425 
049 |a UAMI 
100 1 |a Wang, Chi-Teh,  |e author. 
245 1 0 |a Nonlinear large-deflection boundary-value problems of rectangular plates /  |c by Chi-Teh Wang. 
264 1 |a Washington, D.C. :  |b National Advisory Committee for Aeronautics,  |c 1948. 
300 |a 1 online resource (113 pages) :  |b illustrations, tables 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a National Advisory Committee for Aeronautics technical note ;  |v number 1425 
500 |a Date of issue: March 1948. 
500 |a Report no. NACA TN No. 1425. 
504 |a Includes bibliographical references. 
520 3 |a Relaxation and successive approximation methods are used to solve Von Karman's equations as applied to initially flat, rectangular plates with large deflections under either normal pressure or combined normal pressure and side thrust, and several specific cases are analyzed. The general method developed may be applied to bending and combined bending and buckling problems with practically any boundary conditions to any required degree of accuracy or applied to solve the membrane theory of the plate which applies when the deflection is very large in comparison with the thickness of the plate. 
588 0 |a Print version record. 
590 |a Knovel  |b ACADEMIC - Aerospace & Radar Technology 
650 0 |a Plates (Engineering) 
650 0 |a Boundary value problems. 
650 0 |a Relaxation methods (Mathematics) 
650 6 |a Plaques (Ingénierie) 
650 6 |a Problèmes aux limites. 
650 6 |a Méthodes de relaxation (Mathématiques) 
650 7 |a Boundary value problems  |2 fast 
650 7 |a Plates (Engineering)  |2 fast 
650 7 |a Relaxation methods (Mathematics)  |2 fast 
710 1 |a United States.  |b National Advisory Committee for Aeronautics,  |e issuing body. 
776 0 8 |i Print version:  |a Wang, Chi-Teh.  |t Nonlinear large-deflection boundary-value problems of rectangular plates  |w (OCoLC)656395082 
830 0 |a Technical note (United States. National Advisory Committee for Aeronautics) ;  |v no. 1425. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpNLDBVPR6/toc  |z Texto completo 
994 |a 92  |b IZTAP