Cargando…

Mathematical stereochemistry /

Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. A new stereoisogram approach, developed by the author, is introduced in this book, providing a theoretical framework for mathematical aspects of modern stereo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fujita, Shinsaku, 1944-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, [2015]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 KNOVEL_ocn918555681
003 OCoLC
005 20231027140348.0
006 m o d
007 cr |n|||||||||
008 150814s2015 gw a ob 001 0 eng d
010 |a  2015025522 
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d COO  |d OCLCO  |d YDXCP  |d EBLCP  |d OCLCF  |d DEBBG  |d OCLCQ  |d KNOVL  |d OCLCQ  |d LVT  |d OCLCQ  |d UAB  |d K6U  |d CCO  |d PIFAG  |d FVL  |d ZCU  |d OCLCQ  |d MERUC  |d IYU  |d FEM  |d MERER  |d OCLCQ  |d DEGRU  |d U3W  |d COCUF  |d DKU  |d STF  |d WRM  |d OCLCQ  |d RRP  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d U3G  |d DKC  |d AU@  |d OCLCQ  |d UKAHL  |d OCLCQ  |d S9I  |d OCLCQ  |d VLY  |d MM9  |d BRF  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 920719826  |a 959648654  |a 966055429  |a 969048796  |a 1010996837  |a 1055391425  |a 1066621416  |a 1081279131  |a 1162295109  |a 1228560239 
020 |a 311036669X  |q (electronic bk.) 
020 |a 9783110366693  |q (electronic bk.) 
020 |a 9781523104604  |q (electronic bk.) 
020 |a 1523104600  |q (electronic bk.) 
020 |a 9783110386370 
020 |a 3110386372 
020 |z 9783110371970  |q (hbk. ;  |q acid-free paper) 
020 |z 3110366703 
020 |z 3110371979  |q (hbk. ;  |q acid-free paper) 
020 |z 3110386372 
029 1 |a AU@  |b 000062594033 
029 1 |a CHBIS  |b 011058053 
029 1 |a CHVBK  |b 498841650 
029 1 |a DEBBG  |b BV042999477 
029 1 |a DEBBG  |b BV044050467 
029 1 |a DEBSZ  |b 478009550 
029 1 |a GBVCP  |b 836180259 
029 1 |a AU@  |b 000066766558 
035 |a (OCoLC)918555681  |z (OCoLC)920719826  |z (OCoLC)959648654  |z (OCoLC)966055429  |z (OCoLC)969048796  |z (OCoLC)1010996837  |z (OCoLC)1055391425  |z (OCoLC)1066621416  |z (OCoLC)1081279131  |z (OCoLC)1162295109  |z (OCoLC)1228560239 
037 |a 821133  |b MIL 
050 4 |a QD481  |b .F8965 2015eb 
082 0 4 |a 541/.2230151  |2 23 
049 |a UAMI 
100 1 |a Fujita, Shinsaku,  |d 1944- 
245 1 0 |a Mathematical stereochemistry /  |c Shinsaku Fujita. 
264 1 |a Berlin ;  |a Boston :  |b De Gruyter,  |c [2015] 
300 |a 1 online resource (xviii, 437 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Introduction -- 1.1 Two-Dimensional versus Three-Dimensional Structures -- 1.1.1 Two-Dimensional Structures in Early History of Organic Chemistry -- 1.1.2 Three-Dimensional Structures After Beginning of Stereochemistry -- 1.1.3 Arbitrary Switching Between 2D-Based and 3D-Based Concepts -- 1.2 Problematic Methodology for Categorizing Isomers and Stereoisomers -- 1.2.1 Same or Different -- 1.2.2 Dual Definition of Isomers -- 1.2.3 Positional Isomers as a Kind of Constitutional Isomers -- 1.3 Problematic Methodology for Categorizing Enantiomers and Diastereomers -- 1.3.1 Enantiomers -- 1.3.2 Diastereomers -- 1.3.3 Chirality and Stereogenicity -- 1.4 Total Misleading Features of the Traditional Terminology on Isomers -- 1.4.1 Total Misleading Flowcharts -- 1.4.2 Another Flowchart With Partial Solutions -- 1.4.3 More Promising Way -- 1.5 Isomer Numbers -- 1.5.1 Combinatorial Enumeration as 2D Structures -- 1.5.2 Importance of the Proligand-Promolecule Model -- 1.5.3 Combinatorial Enumeration as 3D Structures -- 1.6 Stereoisograms -- 1.6.1 Stereoisograms as Diagrammatic Expressions of RS-Stereoisomeric Groups -- 1.6.2 Theoretical Foundations and Group Hierarchy -- 1.6.3 Avoidance of Misleading Standpoints of R/S-Stereodescriptors -- 1.6.4 Avoidance of Misleading Standpoints of pro-R/pro-S-Descriptors -- 1.6.5 Global Symmetries and Local Symmetries -- 1.6.6 Enumeration under RS-Stereoisomeric Groups -- 1.7 Aims of Mathematical Stereochemistry -- References -- 2. Classification of Isomers -- 2.1 Equivalence Relationships of Various Levels of Isomerism -- 2.1.1 Equivalence Relationships and Equivalence Classes -- 2.1.2 Enantiomers, Stereoisomers, and Isomers -- 2.1.3 Inequivalence Relationships -- 2.1.4 Isoskeletomers as a Missing Link for Consistent Terminology. 
505 8 |a 2.1.5 Constitutionally-Anisomeric Relationships vs. Constitutionally-Isomeric Relationships -- 2.2 Revised Flowchart for Categorizing Isomers -- 2.2.1 Design of a Revised Flowchart for Categorizing Isomers -- 2.2.2 Illustrative Examples -- 2.2.3 Restriction of the Domain of Isomerism -- 2.2.4 Harmonization of 3D-Based Concepts with 2D-Based Concepts -- References -- 3. Point-Group Symmetry -- 3.1 Stereoskeletons and the Proligand-Promolecule Model -- 3.1.1 Configuration and Conformation -- 3.1.2 The Proligand-Promolecule Model -- 3.2 Point Groups -- 3.2.1 Symmetry Axes and Symmetry Operations -- 3.2.2 Construction of Point Groups -- 3.2.3 Subgroups of a Point Group -- 3.2.4 Maximum Chiral Subgroup of a Point Group -- 3.2.5 Global and Local Point-Group Symmetries -- 3.3 Point-Group Symmetries of Stereoskeletons -- 3.3.1 Stereoskeletons of Ligancy 4 -- 3.3.2 Stereoskeletons of Ligancy 6 -- 3.3.3 Stereoskeletons of Ligancy 8 -- 3.3.4 Stereoskeletons Having Two or More Orbits -- 3.4 Point-Group Symmetries of (Pro)molecules -- 3.4.1 Derivation of Molecules from a Stereoskeleton via Promolecules -- 3.4.2 Orbits in Molecules and Promolecules Derived from Stereoskeletons -- 3.4.3 The SCR Notation -- 3.4.4 Site Symmetries vs. Coset Representations for Symmetry Notations -- References -- 4. Sphericities of Orbits and Prochirality -- 4.1 Sphericities of Orbits -- 4.1.1 Orbits of Equivalent Proligands -- 4.1.2 Three Kinds of Sphericities -- 4.1.3 Chirality Fittingness for Three Modes of Accommodation -- 4.2 Prochirality -- 4.2.1 Confusion on the Term 'Prochirality' -- 4.2.2 Prochirality as a Geometric Concept -- 4.2.3 Enantiospheric Orbits vs. Enantiotopic Relationships -- 4.2.4 Chirogenic Sites in an Enantiospheric Orbit -- 4.2.5 Prochirality Concerning Chiral Proligands in Isolation. 
505 8 |a 4.2.6 Global Prochirality and Local Prochirality -- References -- 5. Foundations of Enumeration Under Point Groups -- 5.1 Orbits Governed by Coset Representations -- 5.1.1 Coset Representations -- 5.1.2 Mark Tables -- 5.1.3 Multiplicities of Orbits -- 5.2 Subduction of Coset Representations -- 5.2.1 Subduced Representations -- 5.2.2 Unit Subduced Cylce Indices (USCIs) -- References -- 6. Symmetry-Itemized Enumeration Under Point Groups -- 6.1 Fujita's USCI Approach -- 6.1.1 Historical Comments -- 6.1.2 USCI-CFs for Itemized Enumeration -- 6.1.3 Subduced Cycle Indices for Itemized Enumeration -- 6.2 The FPM Method of Fujita's USCI Approach -- 6.2.1 Fixed-Point Vectors (FPVs) and Multiplicity Vectors (MVs) -- 6.2.2 Fixed-Point Matrices (FPMs) and Isomer-Counting Matrices (ICMs) -- 6.2.3 Practices of the FPM Method -- 6.3 The PCI Method of Fujita's USCI Approach -- 6.3.1 Partial Cycle Indices With Chirality Fittingness (PCI-CFs) -- 6.3.2 Partial Cycle Indices Without Chirality Fittingness (PCIs) -- 6.3.3 Practices of the PCI Method -- 6.4 Other Methods of Fujita's USCI Approach -- 6.4.1 The Elementary-Superposition Method -- 6.4.2 The Partial-Superposition Method -- 6.5 Applications of Fujita's USCI Approach -- 6.5.1 Enumeration of Flexible Molecules -- 6.5.2 Enumeration of Molecules Interesting Stereochemically -- 6.5.3 Enumeration of Inorganic Complexes -- 6.5.4 Enumeration of Organic Reactions -- References -- 7. Gross Enumeration Under Point Groups -- 7.1 Counting Orbits -- 7.2 Pólya's Theorem of Counting -- 7.3 Fujita's Proligand Method of Counting -- 7.3.1 Historical Comments -- 7.3.2 Sphericities of Cycles -- 7.3.3 Products of Sphericity Indices -- 7.3.4 Practices of Fujita's Proligand Method -- 7.3.5 Enumeration of Achiral and Chiral Promolecules -- References. 
505 8 |a 8. Enumeration of Alkanes as 3D Structures -- 8.1 Surveys With Historical Comments -- 8.2 Enumeration of Alkyl Ligands as 3D Planted Trees -- 8.2.1 Enumeration of Methyl Proligands as Planted Promolecules -- 8.2.2 Recursive Enumeration of Alkyl ligands as Planted Promolecules -- 8.2.3 Functional Equations for Recursive Enumeration of Alkyl ligands -- 8.2.4 Achiral Alkyl Ligands and Pairs of Enantiomeric Alkyl Ligands -- 8.3 Enumeration of Alkyl Ligands as Planted Trees -- 8.3.1 Alkyl Ligands or Monosubstituted Alkanes as Graphs -- 8.3.2 3D Structures vs. Graphs for Characterizing Alkyl Ligands or Monosubstituted Alkanes -- 8.4 Enumeration of Alkanes (3D-Trees) as 3D-Structural Isomers -- 8.4.1 Alkanes as Centroidal and Bicentroidal 3D-Trees -- 8.4.2 Enumeration of Centroidal Alkanes (3D-Trees) as 3D-Structural Isomers -- 8.4.3 Enumeration of Bicentroidal Alkanes (3D-Trees) as 3D-Structural Isomers -- 8.4.4 Total Enumeration of Alkanes as 3D-Trees -- 8.5 Enumeration of Alkanes (3D-Trees) as Steric Isomers -- 8.5.1 Centroidal Alkanes (3D-Trees) as Steric Isomers -- 8.5.2 Bicentroidal Alkanes (3D-Trees) as Steric Isomers -- 8.5.3 Total Enumeration of Alkanes (3D-Trees) as Steric Isomers -- 8.6 Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers -- 8.6.1 Alkanes as Centroidal and Bicentroidal Trees -- 8.6.2 Enumeration of Centroidal Alkanes (Trees) as Constitutional Isomers -- 8.6.3 Enumeration of Bicentroidal Alkanes (Trees) as Constitutional Isomers -- 8.6.4 Total Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers -- References -- 9. Permutation-Group Symmetry -- 9.1 Historical Comments -- 9.2 Permutation Groups -- 9.2.1 Permutation Groups as Subgroups of Symmetric Groups -- 9.2.2 Permutations vs. Reflections -- 9.3 RS-Permutation Groups. 
505 8 |a 9.3.1 RS-Permutations and RS-Diastereomeric Relationships -- 9.3.2 RS-Permutation Groups vs. Point Groups -- 9.3.3 Formulation of RS-Permutation Groups -- 9.3.4 Action of RS-Permutation Groups -- 9.3.5 Misleading Features of the Conventional Terminology -- 9.4 RS-Permutation Groups for Skeletons of Ligancy 4 -- 9.4.1 RS-Permutation Group for a Tetrahedral Skeleton -- 9.4.2 RS-Permutation Group for an Allene Skeleton -- 9.4.3 RS-Permutation Group for an Ethylene Skeleton -- References -- 10. Stereoisograms and RS-Stereoisomers -- 10.1 Stereoisograms as Integrated Diagrammatic Expressions -- 10.1.1 Elementary Stereoisograms of Skeletons with Position Numbering -- 10.1.2 Stereoisograms Based on Elementary Stereoisograms -- 10.2 Enumeration Under RS-Stereoisomeric Groups -- 10.2.1 Subgroups of the RS-Stereoisomeric Group C3v sI -- 10.2.2 Coset Representations -- 10.2.3 Mark Table and its Inverse -- 10.2.4 Subduction for RS-Stereoisomeric Groups -- 10.2.5 USCI-CFs for RS-Stereoisomeric Groups -- 10.2.6 SCI-CFs for RS-Stereoisomeric Groups -- 10.2.7 The PCI Method for RS-Stereoisomeric Groups -- 10.2.8 Type-Itemized Enumeration by the PCI Method -- 10.2.9 Gross Enumeration Under RS-Stereoisomeric Groups -- 10.3 Comparison with Enumeration Under Subgroups -- 10.3.1 Comparison with Enumeration Under Point Groups -- 10.3.2 Comparison with Enumeration Under RS-Permutation Groups -- 10.3.3 Comparison with Enumeration Under Maximum-Chiral Point Subgroups -- 10.4 RS-Stereoisomers as Intermediate Concepts -- References -- 11. Stereoisograms for Tetrahedral Derivatives -- 11.1 RS-Stereoisomeric Group Td sI and Elementary Stereoisogram -- 11.2 Stereoisograms of Five Types for Tetrahedral Derivatives -- 11.2.1 Type-I Stereoisograms of Tetrahedral Derivatives. 
520 |a Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. A new stereoisogram approach, developed by the author, is introduced in this book, providing a theoretical framework for mathematical aspects of modern stereochemistry. The discussion covers point-groups and permutation symmetry and exemplifies the concepts using organic molecules and inorganic complexes. 
546 |a English. 
590 |a Knovel  |b ACADEMIC - Chemistry & Chemical Engineering 
650 0 |a Stereochemistry. 
650 0 |a Chemistry  |x Mathematics. 
650 6 |a Stéréochimie. 
650 7 |a SCIENCE / Chemistry / Physical & Theoretical.  |2 bisacsh 
650 7 |a Chemistry  |x Mathematics.  |2 fast  |0 (OCoLC)fst00853398 
650 7 |a Stereochemistry.  |2 fast  |0 (OCoLC)fst01133138 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |t Fujita, Shinsaku. Mathematical Stereochemistry 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpMS000023/toc  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7099916 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27004498 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27004483 
938 |a De Gruyter  |b DEGR  |n 9783110366693 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29825393 
938 |a YBP Library Services  |b YANK  |n 11770008 
994 |a 92  |b IZTAP