Cargando…

Fiber optic sensors based on plasmonics /

"The book provides an introduction of surface plasmons and presents its applications in the sensing of various chemical and biological analyses using optical fiber technology. The field is developed by introducing the surface plasmons for semi-infinite metal-dielectric interface with discussion...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gupta, Banshi Dhar (Autor), Srivastava, Sachin Kumar (Autor), Verma, Roli (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, NJ : World Scientific Publishing Co., [2015]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contents
  • Preface
  • Acknowledgements
  • 1. Introduction
  • 1.1 Surface Plasmons: Historical Perspective
  • 1.2 Kretschmann and Otto Configurations
  • 1.3 Fiber Optic SPR Sensor Developments
  • 1.4 Overview of the Book
  • References
  • 2. Physics of Plasmons
  • 2.1 Introduction
  • 2.2 SPs at Semi-Infinite Metal-Dielectric Interface
  • 2.2.1 Non-existence of SPs for TE modes
  • 2.2.2 Existence of SPs for TM modes
  • 2.2.3 Field
  • 2.2.4 Penetration depth
  • 2.2.5 Propagation length
  • 2.3 Excitation of SPs
  • 2.3.1 Prism-based method
  • 2.3.2 Waveguide-based method2.3.3 Grating-based method
  • 2.4 SPModes of a Thin Metal Film
  • 2.5 Long and Short Range Surface Plasmons
  • 2.6 Nearly GuidedWave SPR (NGWSPR)
  • 2.7 Interrogation Techniques
  • 2.7.1 Angular interrogation
  • 2.7.2 Spectral interrogation
  • 2.7.3 Intensity interrogation
  • 2.7.4 Phase interrogation
  • 2.8 SPR Imaging (SPRI)
  • 2.9 Summary
  • References
  • 3. Characteristics and Components of Fiber Optic Sensor
  • 3.1 Components of a Sensor and Their Functions
  • 3.1.1 Analyte/sample
  • 3.1.2 Receptors
  • 3.1.2.1 Enzymatic receptors3.1.2.2 Antibody-based receptors
  • 3.1.2.2.1 Polyclonal antibody
  • 3.1.2.2.2 Monoclonal antibody
  • 3.1.2.3 Nucleic acid based receptors
  • 3.1.2.4 Cell-based receptors
  • 3.1.2.5 Tissue-based receptors
  • 3.1.3 Transducers
  • 3.1.3.1 Electrochemical
  • 3.1.3.1.1 Amperometric
  • 3.1.3.1.2 Conductometric
  • 3.1.3.1.3 Potentiometric
  • 3.1.3.2 Piezoelectric
  • 3.1.3.3 Thermometric
  • 3.1.3.4 Optical transducers
  • 3.1.4 Detector
  • 3.2 Optical Fiber
  • 3.2.1 TIR
  • 3.2.2 Light ray propagation in an optical fiber
  • 3.2.3 Numerical aperture3.2.4 Fiber modes
  • 3.3 Optical Fiber Sensors
  • 3.4 Performance Parameters
  • 3.4.1 Sensitivity
  • 3.4.2 Selectivity/specificity
  • 3.4.3 Limit of detection
  • 3.4.4 Accuracy
  • 3.4.5 Resolution
  • 3.4.6 Repeatability
  • 3.4.7 Reproducibility
  • 3.4.8 Noise
  • 3.4.9 Range
  • 3.4.10 Response time
  • 3.4.11 Linearity
  • 3.4.12 Drift
  • 3.4.13 Figure ofmerit
  • 3.5 Summary
  • References
  • 4. Theory of SPR-based Optical Fiber Sensor
  • 4.1 Introduction
  • 4.2 N-Layer Model
  • 4.3 Excitation by Meridional Rays: On Axis Excitation4.4 Excitation by Skew Rays: Off Axis Excitation
  • 4.5 Diffuse Source
  • 4.6 Performance Parameters: Sensitivity, Detection Accuracy, and Figure of Merit (FOM)
  • 4.7 Summary
  • References
  • 5. Fabrication and Functionalization Methods
  • 5.1 Sensing Elements
  • 5.1.1 Sensor surface
  • 5.1.1.1 Preparation of the fiber probe
  • 5.1.1.2 Coating of the metal layer
  • 5.1.1.3 Criterion for support selection
  • 5.2 Immobilization Techniques
  • 5.2.1 Covalent binding
  • 5.2.1.1 Thiol bonding