Cargando…

Introduction to pattern recognition and machine learning /

"This book adopts a detailed and methodological algorithmic approach to explain the concepts of pattern recognition. While the text provides a systematic account of its major topics such as pattern representation and nearest neighbour based classifiers, current topics -- neural networks, suppor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Murty, M. Narasimha (Autor), Devi, V. Susheela (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, [2015]
Colección:IISc lecture notes series ; 5.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 KNOVEL_ocn908447858
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 150506s2015 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCO  |d YDXCP  |d IDEBK  |d CUS  |d KNOVL  |d CDX  |d EBLCP  |d DEBSZ  |d OCLCQ  |d STF  |d JBG  |d BUF  |d WYU  |d LEAUB  |d AU@  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 929520288  |a 932327995  |a 1066428199 
020 |a 9789814335461  |q (electronic bk.) 
020 |a 9814335460  |q (electronic bk.) 
020 |a 9781680158588  |q (electronic bk.) 
020 |a 1680158589  |q (electronic bk.) 
020 |z 9789814335454 
020 |z 9814335452 
029 1 |a CHDSB  |b 006385815 
029 1 |a DEBSZ  |b 455003572 
029 1 |a GBVCP  |b 826457118 
029 1 |a GBVCP  |b 877457603 
035 |a (OCoLC)908447858  |z (OCoLC)929520288  |z (OCoLC)932327995  |z (OCoLC)1066428199 
050 4 |a TK7882.P3  |b M87 2015eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
049 |a UAMI 
100 1 |a Murty, M. Narasimha,  |e author. 
245 1 0 |a Introduction to pattern recognition and machine learning /  |c M Narasimha Murty, Der V Susheela Devi (Indian Institute of Science, India). 
264 1 |a New Jersey :  |b World Scientific,  |c [2015] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IISc lecture notes series,  |x 2010-2402 ;  |v vol. 5 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Table of Contents; About the Authors; Preface; 1. Introduction; 1. Classifiers: An Introduction; 2. An Introduction to Clustering; 3. Machine Learning; Research Ideas; 2. Types of Data; 1. Features and Patterns; 2. Domain of a Variable; 3. Types of Features; 3.1. Nominal data; 3.1.1. Operations on nominal variables; 3.2. Ordinal data; 3.2.1. Operations possible on ordinal variables; 3.3. Interval-valued variables; 3.3.1. Operations possible on interval-valued variables; 3.4. Ratio variables; 3.5. Spatio-temporal data; 4. Proximity measures; 4.1. Fractional norms; 4.2. Are metrics essential? 
505 8 |a 4.3. Similarity between vectors4.4. Proximity between spatial patterns; 4.5. Proximity between temporal patterns; 4.6. Mean dissimilarity; 4.7. Peak dissimilarity; 4.8. Correlation coefficient; 4.9. Dynamic Time Warping (DTW) distance; 4.9.1. Lower bounding the DTW distance; Research Ideas; 3. Feature Extraction and Feature Selection; 1. Types of Feature Selection; 2. Mutual Information (MI) for Feature Selection; 3. Chi-square Statistic; 4. Goodman-Kruskal Measure; 5. Laplacian Score; 6. Singular Value Decomposition (SVD); 7. Non-negative Matrix Factorization (NMF). 
505 8 |a 8. Random Projections (RPs) for Feature Extraction8.1. Advantages of random projections; 9. Locality Sensitive Hashing (LSH); 10. Class Separability; 11. Genetic and Evolutionary Algorithms; 11.1. Hybrid GA for feature selection; 12. Ranking for Feature Selection; 12.1. Feature selection based on an optimization formulation; 12.2. Feature ranking using F-score; 12.3. Feature ranking using linear support vector machine (SVM) weight vector; 12.4. Ensemble feature ranking; 12.4.1. Using threshold-based feature selection techniques; 12.4.2. Evolutionary algorithm. 
505 8 |a 12.5. Feature ranking using number of label changes13. Feature Selection for Time Series Data; 13.1. Piecewise aggregate approximation; 13.2. Spectral decomposition; 13.3. Wavelet decomposition; 13.4. Singular Value Decomposition (SVD); 13.5. Common principal component loading based variable subset selection (CLeVer); Research Ideas; 4. Bayesian Learning; 1. Document Classification; 2. Naive Bayes Classifier; 3. Frequency-Based Estimation of Probabilities; 4. Posterior Probability; 5. Density Estimation; 6. Conjugate Priors; Research Ideas; 5. Classification. 
505 8 |a 1. Classification Without Learning2. Classification in High-Dimensional Spaces; 2.1. Fractional distance metrics; 2.2. Shrinkage-divergence proximity (SDP); 3. RandomForests; 3.1. Fuzzy random forests; 4. Linear Support Vector Machine (SVM); 4.1. SVM-kNN; 4.2. Adaptation of cutting plane algorithm; 4.3. Nystrom approximated SVM; 5. Logistic Regression; 6. Semi-supervised Classification; 6.1. Using clustering algorithms; 6.2. Using generative models; 6.3. Using low density separation; 6.4. Using graph-based methods; 6.5. Using co-training methods; 6.6. Using self-training methods. 
520 |a "This book adopts a detailed and methodological algorithmic approach to explain the concepts of pattern recognition. While the text provides a systematic account of its major topics such as pattern representation and nearest neighbour based classifiers, current topics -- neural networks, support vector machines and decision trees -- attributed to the recent vast progress in this field are also dealt with. Introduction to Pattern Recognition and Machine Learning will equip readers, especially senior computer science undergraduates, with a deeper understanding of the subject matter."--  |c Provided by publisher 
590 |a Knovel  |b ACADEMIC - Computer Hardware Engineering 
590 |a Knovel  |b ACADEMIC - Software Engineering 
650 0 |a Pattern recognition systems. 
650 0 |a Machine learning. 
650 2 |a Pattern Recognition, Automated 
650 2 |a Machine Learning 
650 6 |a Reconnaissance des formes (Informatique) 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Pattern recognition systems  |2 fast 
700 1 |a Devi, V. Susheela,  |e author. 
776 0 8 |i Print version:  |a Murty, M. Narasimha.  |t Introduction to pattern recognition and machine learning  |z 9789814335454  |w (DLC) 2014044796  |w (OCoLC)697260699 
830 0 |a IISc lecture notes series ;  |v 5.  |x 2010-2402 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpIPRML003/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28816107 
938 |a Coutts Information Services  |b COUT  |n 31537216 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3572457 
938 |a EBSCOhost  |b EBSC  |n 988271 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis31537216 
938 |a YBP Library Services  |b YANK  |n 12410282 
994 |a 92  |b IZTAP