A systems approach to lithium-ion battery management /
Previously limited to heavy and bulky lead-acid storage batteries, large format batteries were used only where absolutely necessary as a means of energy storage. The improved energy density, cycle life, power capability, and durability of lithium ion cells has given us electric and hybrid vehicles w...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boston :
Artech House,
[2014]
|
Colección: | Artech House power engineering series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1 Introduction; 1.1 Battery Management Systems and Appli; 1.2 State of the Art; 1.3 Challenges; 2 Lithium-Ion Battery Fundamentals; 2.1 Battery Operation; 2.2 Battery Construction; 2.3 Battery Chemistry; 2.4 Safety; 2.5 Longevity; 2.6 Performance; 2.7 Integration; 3 Large-Format Systems; 3.1 Definition; 3.2 Balance of Plant; 3.3 Load Interface; 3.4 Variation and Divergence; 3.5 Application Parameters; 4 System Description; 4.1 Typical Inputs; 4.2 Typical Outputs; 4.3 Typical Functions; 4.4 Summary; 5 Architectures; 5.1 Monolithic; 5.2 Distributed; 5.3 Semi-Distributed
- 5.4 Connection Methods5.5 Additional Scalability; 5.6 Battery Pack Architectures; 5.7 Power Supply; 5.8 Control Power; 5.9 Computing Architecture; 6 Measurement; 6.1 Cell Voltage Measurement; 6.2 Current Measurement ; 6.2.1 Current Sensors; 6.2.2 Current Sense Measurement; 6.3 Synchronization of Current and Volta; 6.4 Temperature Measurement; 6.5 Measurement Uncertainty and Battery ; 6.6 Interlock Status; 7 Control; 7.1 Contactor Control; 7.2 Soft Start or Precharge Circuits; 7.3 Control Topologies; 7.4 Contactor Opening Transients; 7.5 Chatter Detection; 7.6 Economizers
- 7.7 Contactor Topologies7.8 Contactor Fault Detection; 8 Battery Management System Functionality; 8.1 Charging Strategies; 8.1.1 CC/CV Charging Method; 8.1.2 Target Voltage Method; 8.1.3 Constant Current Method; 8.2 Thermal Management; 8.3 Operational Modes; 9 High-Voltage Electronics Fundamentals; 9.1 High-Voltage DC Hazards; 9.2 Safety of High-Voltage Electronics; 9.3 Conductive Anodic Filaments; 9.4 Floating Measurements; 9.4.1 Y-Capacitance; 9.5 HV Isolation; 9.6 ESD Suppression on Isolated Devices; 9.7 Isolation Detection; 10 Communications; 10.1 Overview; 10.2 Network Technologies
- 10.2.1 IC/SPI10.2.2 RS-232 and RS-485; 10.2.3 Local Interconnect Network; 10.2.4 CAN; 10.2.5 Ethernet and TCP/IP; 10.2.6 Modbus; 10.2.7 FlexRay; 10.3 Network Design; 11 Battery Models; 11.1 Overview; 11.2 Thévenin Equivalent Circuit; 11.3 Hysteresis; 11.4 Coulombic Efficiency; 11.5 Nonlinear Elements; 11.6 Self-Discharge Modeling; 11.7 Physics-Based Battery Models; 11.7.1 Doyle-Fuller-Newman Model; 11.7.2 Single Particle Model; 11.8 State-Space Representations of Batt; References; 12 Parameter Identification; 12.1 Brute-Force Approach; 12.2 Online Parameter Identification
- 12.3 SOC/OCV Characterization12.4 Kalman Filtering; 12.5 Recursive Least Squares; 12.6 Electrochemical Impedance Spectrosc; 13 Limit Algorithms; 13.1 Purpose; 13.2 Goals; 13.3 Limit Strategy; 13.4 Determining Safe Operating Area; 13.5 Temperature; 13.6 SOC/DOD; 13.7 Cell Voltage; 13.8 Faults; 13.9 First-Order Predictive Power Limit; 13.10 Polarization-Dependent Limit; 13.11 Limit Violation Detection ; 13.12 Limits with Multiple Parallel Stri; 14 Charge Balancing; 14.1 Balancing Strategies; 14.2 Balancing Optimization; 14.3 Charge Transfer Balancing; 14.3.1 Flying Capacitor