Cargando…

Advanced signal processing on brain event-related potentials : filtering ERPs in time, frequency and space domains sequentially and simultaneously /

"This book is devoted to the application of advanced signal processing on event-related potentials (ERPs) in the context of electroencephalography (EEG) for the cognitive neuroscience. ERPs are usually produced through averaging single-trials of preprocessed EEG, and then, the interpretation of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cong, Fengyu (Autor), Ristaniemi, Tapani (Autor), Lyytinen, Heikki (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, NJ : World Scientific, [2015]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 KNOVEL_ocn907289269
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu|||unuuu
008 150414t20152015njua ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d YDXCP  |d CDX  |d OCLCF  |d EBLCP  |d ZCU  |d KNOVL  |d OCLCQ  |d COO  |d UAB  |d OCLCQ  |d CEF  |d RRP  |d OCLCQ  |d AU@  |d WYU  |d LEAUB  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB502354  |2 bnb 
016 7 |a 017002383  |2 Uk 
019 |a 1066419674 
020 |a 9789814623094  |q (electronic bk.) 
020 |a 9814623091  |q (electronic bk.) 
020 |a 9781680158526  |q (electronic bk.) 
020 |a 168015852X  |q (electronic bk.) 
020 |a 9814623083 
020 |a 9789814623087 
020 |z 9789814623087 
029 1 |a AU@  |b 000056694355 
029 1 |a GBVCP  |b 826423604 
029 1 |a GBVCP  |b 877498776 
029 1 |a AU@  |b 000073143186 
035 |a (OCoLC)907289269  |z (OCoLC)1066419674 
050 4 |a RC386.6.E56 
072 7 |a HEA  |x 039110  |2 bisacsh 
072 7 |a MED  |x 056000  |2 bisacsh 
082 0 4 |a 616.8/047547  |2 23 
049 |a UAMI 
100 1 |a Cong, Fengyu,  |e author. 
245 1 0 |a Advanced signal processing on brain event-related potentials :  |b filtering ERPs in time, frequency and space domains sequentially and simultaneously /  |c Fengyu Cong, Tapani Ristaniemi, Heikki Lyytinen. 
264 1 |a Hackensack, NJ :  |b World Scientific,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (Ebsco, viewed April 15, 2015). 
504 |a Includes bibliographical references. 
505 0 |a Preface; List of Abbreviations; Chapter 1 Introduction; 1.1 Motivation; 1.1.1 Categories of EEG data; 1.1.2 Signal processing of EEG data; 1.2 Example of Conventional ERP Data Processing; 1.3 Linear Transform Model of ERP Data; 1.4 Existing Problems in Conventional ERP Data Processing and Their Solutions; 1.4.1 Assumptions for the averaging step; 1.4.2 Problems in the assumptions of the averaging step; 1.4.3 Solutions; 1.5 ERP Data for the Demonstration inThis Book; References. 
505 8 |a Chapter 2 Wavelet Filter Design Based on Frequency Responses for Filtering ERP DataWith Duration of One Epoch2.1 Correlation; 2.2 Impulse Response and Frequency Response; 2.3 Moving-Average Model-Based FIR Digital Filter; 2.3.1 Interpreting the digital filter in terms of correlation; 2.3.2 Problems of the digital filter in removing artifacts and their solutions; 2.4 DFT-Based Digital Filter; 2.4.1 Definition of DFT; 2.4.2 Interpreting DFT using correlation; 2.4.3 DFT-based digital filter; 2.4.4 Problems of the DFT filter and their corresponding solutions; 2.5 Wavelet Transform. 
505 8 |a 2.5.1 Definition of wavelet transform2.5.2 Interpreting the wavelet transform using correlation; 2.5.3 Differences between the Fourier and wavelet transforms; 2.5.4 Implementation of DWT; 2.6 Wavelet Filter Design Based on Frequency Response; 2.6.1 Introduction to wavelet filter; 2.6.2 Key issues in the wavelet filter design; 2.6.3 Determination of the number of levels; 2.6.3.1 Existing problem and current solution; 2.6.3.2 New solution; 2.6.4 Frequency division at different DWT levels: Overlapped frequency contents at different levels. 
505 8 |a 2.6.5 Frequency division in the first level of DWT: The cutoff frequency of the LP and HP filters is Fs/2 instead of Fs/42.6.6 Selection of the detail coefficients at some levels for signal reconstruction; 2.6.6.1 Existing problem and current solution; 2.6.6.2 New solution; 2.6.7 Choosing the wavelet for the wavelet filter in ERP studies; 2.6.7.1 Existing problem and current solution; 2.6.7.2 New solution; 2.6.8 Effect of sampling frequency on the wavelet filter; 2.7 Linear Superposition Rule of the Wavelet Filter and Benefit of the Wavelet Filter in Contrast to the Digital Filter. 
505 8 |a 2.8 Comparison Between the Wavelet and Digital Filters: Case Study on the Waveform and Magnitude Spectrum2.9 Recommendation for the Wavelet Filter Design; 2.10 Summary: ERP Data Processing Approach Using DFT or Wavelet Filter; 2.11 Existing Key Problem and Potential Solution; 2.12 MATLABCodes; 2.12.1 DFT filter function; 2.12.2 Wavelet filter function; 2.12.3 Frequency responses of DFT filter and wavelet filter; References; Chapter 3 Individual-Level ICA to Extract the ERP Components from the Averaged EEG Data; 3.1 Classic ICA Theory; 3.1.1 Brief history. 
520 |a "This book is devoted to the application of advanced signal processing on event-related potentials (ERPs) in the context of electroencephalography (EEG) for the cognitive neuroscience. ERPs are usually produced through averaging single-trials of preprocessed EEG, and then, the interpretation of underlying brain activities is based on the ordinarily averaged EEG. We find that randomly fluctuating activities and artifacts can still present in the averaged EEG data, and that constant brain activities over single trials can overlap with each other in time, frequency and spatial domains. Therefore, before interpretation, it will be beneficial to further separate the averaged EEG into individual brain activities. The book proposes systematic approaches pre-process wavelet transform (WT), independent component analysis (ICA), and nonnegative tensor factorization (NTF) to filter averaged EEG in time, frequency and space domains to sequentially and simultaneously obtain the pure ERP of interest. Software of the proposed approaches will be open-accessed."--  |c Provided by publisher. 
590 |a Knovel  |b ACADEMIC - Biochemistry, Biology & Biotechnology 
650 0 |a Evoked potentials (Electrophysiology) 
650 0 |a Electroencephalography. 
650 0 |a Signal processing. 
650 2 |a Evoked Potentials 
650 2 |a Electroencephalography 
650 6 |a Potentiels évoqués (Électrophysiologie) 
650 6 |a Électroencéphalographie. 
650 6 |a Traitement du signal. 
650 7 |a HEALTH & FITNESS  |x Diseases  |x Nervous System (incl. Brain)  |2 bisacsh 
650 7 |a MEDICAL  |x Neurology.  |2 bisacsh 
650 7 |a Electroencephalography  |2 fast 
650 7 |a Evoked potentials (Electrophysiology)  |2 fast 
650 7 |a Signal processing  |2 fast 
700 1 |a Ristaniemi, Tapani,  |e author. 
700 1 |a Lyytinen, Heikki,  |e author. 
776 0 8 |i Print version:  |a Cong, Fengyu.  |t Advanced signal processing on brain event-related potentials : filtering ERPs in time, frequency and space domains sequentially and simultaneously.  |d Singapore : World Scientific Publishing Co. Pte. Ltd., ©2015  |h xxi, 202 pages  |z 9789814623087 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpASPBERPA/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28554832 
938 |a Coutts Information Services  |b COUT  |n 31394029 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3051553 
938 |a EBSCOhost  |b EBSC  |n 978099 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis31394029 
938 |a YBP Library Services  |b YANK  |n 12364190 
994 |a 92  |b IZTAP