Cargando…

Aircraft aerodynamic design : geometry and optimization /

"Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variab...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sóbester, András
Otros Autores: Forrester, Alexander I. J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2014.
Colección:Aerospace series
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_ocn883903631
003 OCoLC
005 20231027140348.0
006 m o d
007 cr |||||||||||
008 140716s2014 enk ob 001 0 eng
010 |a  2014028278 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d N$T  |d YDXCP  |d CDX  |d OCLCF  |d EBLCP  |d OCLCQ  |d INT  |d OCLCQ  |d AU@  |d KNOVL  |d UKBTH  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781118534731  |q (ePub) 
020 |a 1118534735  |q (ePub) 
020 |a 9781118534717  |q (Adobe PDF) 
020 |a 1118534719  |q (Adobe PDF) 
020 |a 9781523123407  |q (electronic bk.) 
020 |a 1523123400  |q (electronic bk.) 
020 |z 9780470662571  |q (hardback) 
029 1 |a GBVCP  |b 814844057 
035 |a (OCoLC)883903631 
042 |a pcc 
050 0 0 |a TL671.6 
072 7 |a TEC  |x 009000  |2 bisacsh 
082 0 0 |a 629.134/1  |2 23 
084 |a TEC002000  |2 bisacsh 
049 |a UAMI 
100 1 |a Sóbester, András. 
245 1 0 |a Aircraft aerodynamic design :  |b geometry and optimization /  |c András Sóbester, Alexander Forrester. 
264 1 |a Chichester, West Sussex, United Kingdom :  |b John Wiley & Sons Inc.,  |c 2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
490 0 |a Aerospace series 
520 |a "Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem by navigating the subtle trade-offs between the competing objectives of geometry parameterization. It beginswith the fundamentals of geometry-centred aircraft design, followed by a review of the building blocks of computational geometries, the curve and surface formulations at the heart of aircraft geometry. The authors then cover a range of legacy formulations in the build-up towards a discussion of the most flexible shape models used in aerodynamic design (with a focus on lift generating surfaces). The book takes a practical approach and includes MATLAB(r), Python and Rhinoceros(r) code, as well as 'real-life' example case studies. Key features: Covers effective geometry parameterization within the context of design optimization Demonstrates how geometry parameterization is an important element of modern aircraft design Includes code and case studies which enable the reader to apply each theoretical concept either as an aid to understanding or as a building block of their own geometry model Accompanied by a website hosting codes Aircraft Aerodynamic Design: Geometry and Optimization is a practical guide for researchers and practitioners in the aerospace industry, and a reference for graduate and undergraduate students in aircraft design and multidisciplinary design optimization"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Aerospace Series List; Title Page; Copyright; Series Preface; Preface; Chapter 1: Prologue; Note; Chapter 2: Geometry Parameterization: Philosophy and Practice; 2.1 A Sense of Scale; 2.2 Parametric Geometries; 2.3 What Makes a Good Parametric Geometry: Three Criteria; 2.4 A Parametric Fuselage: A Case Study in the Trade-Offs of Geometry Optimization; 2.5 A General Observation on the Nature of Fixed-Wing Aircraft Geometry Modelling; 2.6 Necessary Flexibility; 2.7 The Place of a Parametric Geometry in the Design Process; Notes; Chapter 3: Curves; 3.1 Conics and Bézier Curves; 3.2 Bézier Splines. 
505 8 |a 3.3 Ferguson's Spline3.4 B-Splines; 3.5 Knots; 3.6 Nonuniform Rational Basis Splines; 3.7 Implementation in Rhino; 3.8 Curves for Optimization; Notes; Chapter 4: Surfaces; 4.1 Lofted, Translated and Coons Surfaces; 4.2 Bézier Surfaces; 4.3 B-Spline and Nonuniform Rational Basis Spline Surfaces; 4.4 Free-Form Deformation; 4.5 Implementation in Rhino; 4.6 Surfaces for Optimization; Notes; Chapter 5: Aerofoil Engineering: Fundamentals; 5.1 Definitions, Conventions, Taxonomy, Description; 5.2 A 'Non-Taxonomy' of Aerofoils; 5.3 Legacy versus Custom-Designed Aerofoils. 
505 8 |a 5.4 Using Legacy Aerofoil Definitions5.5 Handling Legacy Aerofoils: A Practical Primer; 5.6 Aerofoil Families versus Parametric Aerofoils; Notes; Chapter 6: Families of Legacy Aerofoils; 6.1 The NACA Four-Digit Section; 6.2 The NACA Five-Digit Section; 6.3 The NACA SC Families; Notes; Chapter 7: Aerofoil Parameterization; 7.1 Complex Transforms; 7.2 Can a Pair of Ferguson Splines Represent an Aerofoil?; 7.3 Kulfan's Class- and Shape-Function Transformation; 7.4 Other Formulations: Past, Present and Future; Notes; Chapter 8: Planform Parameterization; 8.1 The Aspect Ratio; 8.2 The Taper Ratio. 
505 8 |a 8.3 Sweep8.4 Wing Area; 8.5 Planform Definition; Notes; Chapter 9: Three-Dimensional Wing Synthesis; 9.1 Fundamental Variables; 9.2 Coordinate Systems; 9.3 The Synthesis of a Nondimensional Wing; 9.4 Wing Geometry Scaling. A Case Study: Design of a Commuter Airliner Wing; 9.5 Indirect Wing Geometry Scaling; Notes; Chapter 10: Design Sensitivities; 10.1 Analytical and Finite-Difference Sensitivities; 10.2 Algorithmic Differentiation; 10.3 Example: Differentiating an Aerofoil from Control Points to Lift Coefficient; 10.4 Example Inverse Design; Notes. 
505 8 |a Chapter 11: Basic Aerofoil Analysis: A Worked Example11.1 Creating the .dat and .in files using Python; 11.2 Running XFOIL from Python; Chapter 12: Human-Powered Aircraft Wing Design: A Case Study in Aerodynamic Shape Optimization; 12.1 Constraints; 12.2 Planform Design; 12.3 Aerofoil Section Design; 12.4 Optimization; 12.5 Improving the Design; Notes; Chapter 13: Epilogue: Challenging Topological Prejudice; References; Index; End User License Agreement. 
590 |a Knovel  |b ACADEMIC - Aerospace & Radar Technology 
650 0 |a Airframes. 
650 0 |a Aerodynamics. 
650 6 |a Cellules (Aéronautique) 
650 6 |a Aérodynamique. 
650 7 |a airframes.  |2 aat 
650 7 |a aerodynamics.  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING  |x Aeronautics & Astronautics.  |2 bisacsh 
650 7 |a Aerodynamics  |2 fast 
650 7 |a Airframes  |2 fast 
700 1 |a Forrester, Alexander I. J. 
776 0 8 |i Print version:  |a Sóbester, András.  |t Aircraft aerodynamic design.  |d Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2014  |z 9780470662571  |w (DLC) 2014026821 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpAADGO004/toc  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 29979935 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4036143 
938 |a EBSCOhost  |b EBSC  |n 855636 
938 |a YBP Library Services  |b YANK  |n 12092778 
938 |a YBP Library Services  |b YANK  |n 12676258 
994 |a 92  |b IZTAP